Der Titel dieses Artikels ist mehrdeutig Weitere Bedeutungen sind unter 3D Begriffsklärung aufgeführt 3D oder 3 D ist ei
Dreidimensionalität

3D oder 3-D ist eine verbreitete Abkürzung für die Eigenschaft, tatsächlich oder nur scheinbar räumlich oder dreidimensional zu sein oder drei Dimensionen zu haben. Ursprünglich ein Begriff aus der englischen Sprache wurde die Abkürzung bei der Übernahme technischer Begriffe aus dem Englischen in die deutsche Sprache übernommen, z. B. in 3D-Film, 3D-Druck, 3D-Integration oder 3D-Effekt.
Inzwischen verwenden viele Anwendungsgebiete die Vorsilbe 3D in ihren Fachausdrücken. Dadurch unterscheiden sie zwischen der Verwendung eines Ausdrucks in Bezug auf dreidimensionale oder zweidimensionale Objekte. Die Punkte von 3D-Objekten liegen in verschiedenen Ebenen oder Flächen, während die Punkte von 2D-Objekten in derselben Ebene oder Fläche liegen.
Im Alltag wird ein dreidimensionaler Raum durch die drei Dimensionen Länge, Breite und Höhe beschrieben. Die Geometrie nennt diesen Raum den dreidimensionalen euklidischen Raum. Oft wird die Lage eines Punktes im Raum mit einem kartesischen Koordinatensystem beschrieben. Daneben verwendet man auch andere Koordinatensysteme, z. B. Kugelkoordinaten oder Zylinderkoordinaten. Die moderne Mathematik definiert einen dreidimensionalen mathematischen Raum als einen Raum, in dem drei Koordinaten erforderlich sind, um die Lage eines Punktes zu bestimmen. Diese allgemeingültige Definition enthält den Raum, den wir aus dem Alltag kennen, als Spezialfall.
Grundlage
Dreidimensionaler euklidischer Raum
Im Alltag benutzt man den Begriff „Raum“ z. B. im Zusammenhang mit einer Kiste oder einem Zimmer. Daher kennt man auch die drei voneinander unabhängigen Dimensionen Länge, Höhe und Breite.
Die Mathematik bezeichnet diesen „Raum unserer Anschauung“ in Abgrenzung zu anderen mathematischen Räumen als dreidimensionalen euklidischen Raum. Im euklidischen Raum kann man räumliche Beziehungen zwischen verschiedenen Punkten, z. B. ihren Abstand, mit Methoden der analytischen Geometrie berechnen. Die analytische Geometrie liefert korrekte Ergebnisse, solange die Entfernungen im physikalisch relevanten Bereich liegen, siehe Entfernungsmessung.
Die Physik definiert ein Bezugssystem im euklidischen Raum, um das Verhalten von Objekten im Raum eindeutig und vollständig zu beschreiben. Zum Bezugssystem gehört ein Koordinatensystem. Ein Koordinatensystem macht gegenüber dem euklidischen Raum zusätzliche Annahmen. Diese Annahmen sind die Lage des Koordinatenursprungs und die Richtungen der Koordinatenachsen. Beide sind nicht von der Natur vorgegeben.
Mit Hilfe des Koordinatensystems kann man die Lage eines Punktes im Raum festlegen. Dabei ordnet man jedem Punkt im Raum drei Raumkoordinaten zu.
Beispiele für dreidimensionale Koordinatensysteme
Kartesisches Koordinatensystem
Das kartesische Koordinatensystem bestimmt drei Achsen im Raum, von denen jede auf den beiden anderen senkrecht steht und die sich in einem Punkt, dem Ursprung, schneiden. Man erhält die drei Koordinaten, indem man die senkrechten Projektionen des Punktes auf die drei Koordinatenachsen bildet und diese wiederum als Zahlengeraden auffasst.
Die Lage eines Punktes beschreibt ein Tupel aus drei Koordinaten:
Krummlinige Koordinatensysteme
Zylinderkoordinaten beschreiben die Lage eines Punktes mit Werten für den Winkel zu einer Querachse, den Abstand zur Mittelachse (also ebene Polarkoordinaten) und die Höhe:
Kugelkoordinaten beschreiben die Lage eines Punktes mit Werten für den Abstand zum Mittelpunkt und zwei Winkel:
Koordinatensysteme für die Beschreibung der Erdoberfläche
Für die Beschreibung der Lage eines Punktes auf der Erdoberfläche gibt es spezielle zweidimensionale Koordinatensysteme mit einer zusätzlichen Höhenkoordinate:
- – wobei geografische Koordinaten bedeuten
- – mit als Gauß-Krüger-Koordinatensystem
Dimensionen im mathematischen Raum
Die moderne Mathematik definiert einen n-dimensionalen Raum ganz allgemein als eine Menge mathematischer Objekte mit einer Struktur. Der Spezialfall eines dreidimensionalen Raums heißt . kann Räume mit beliebigen Dimensionen beschreiben. Dabei gilt die Bedingung, dass die Dimensionen voneinander unabhängig sind. Das heißt, man kann die Lage eines Punktes durch das Ändern einer einzigen Koordinate im Raum verschieben. So kann man z. B die „Lage“ eines Bildpunktes im RGB-Farbraum durch drei Intensitätswerte für die drei Grundfarben beschreiben.
Wenn den dreidimensionalen euklidischen Raum beschreibt, wird die Lage einzelner Punkte im Raum in der Regel durch Vektoren im geometrischen Sinn beschrieben.
Geometrische Körper
Ein Körper ist in der Geometrie eine dreidimensionale Figur, die durch ihre Oberfläche beschrieben werden kann. Der räumliche Inhalt eines geometrischen Körpers ist das Volumen. Die Orientierung eines festen Körpers im dreidimensionalen euklidischen Raum kann durch die eulerschen Winkel beschrieben werden.
3D-Modellierung am Computer
Ein existierendes Objekt kann mit einem 3D-Scanner erfasst werden. Daraus kann der Computer ein geometrisches Modell für die Weiterverarbeitung erstellen.
CAD ist eine Methode für das rechnerunterstützte Erzeugen und Ändern der geometrischen Modelle von Objekten. Ein besonderer Vorteil des 3D-CAD ist die Möglichkeit, von den Objekten eine Abbildung aus beliebiger Richtung zu erzeugen. Der 3D-Drucker ermöglicht den auch im Hobbybereich angewendeten Übergang vom virtuellen Modell zum realen Objekt. Zusammen mit den erfassbaren Materialeigenschaften werden erweiterte CAD-Modelle zur Beschreibung der physikalischen Eigenschaften (zum Beispiel Festigkeit, Elastizität) der Objekte erstellt. Digital Prototyping ist ein aus dem Amerikanischen stammender Begriff aus dem Gebiet des Maschinenbau-Ingenieurwesens; er bezeichnet eine Vorgehensweise in der technischen Entwicklung.
3D-Visualisierung bezeichnet die Konvertierung von technischen Zeichnungen und zweidimensionalen Daten zu dreidimensionalen virtuellen Modellen oder Räumen. Außerdem hat sich die interaktive 3D-Visualisierung inzwischen als Standardmethode etabliert, um große Datenmengen, z. B. aus Wissenschaft und Forschung oder dem Finanzwesen, zu untersuchen.
Computer können aus Modellen auch eine virtuelle Realität erzeugen. Als virtuelle Realität wird die Darstellung und gleichzeitige Wahrnehmung einer scheinbaren Wirklichkeit und ihrer physikalischen Eigenschaften in einer in Echtzeit computergenerierten, interaktiven virtuellen Umgebung bezeichnet.
Wahrnehmung von Dreidimensionalität
Stereoskopisches Sehen vermittelt durch die beidäugige Betrachtung von Objekten und Gegenständen eine Tiefenwahrnehmung. Diese ist grundlegend für die Raumwahrnehmung. Beim Hören führt die Lokalisation von Schallquellen zur Raumwahrnehmung.
Räumliche Darstellung in einer Ebene
Darstellende Geometrie
Die Darstellende Geometrie ist der Teilbereich der Geometrie, der sich mit den geometrisch-konstruktiven Verfahren von Projektionen dreidimensionaler Objekte auf eine zweidimensionale Darstellungsebene befasst. Zu den Anwendungsbereichen gehören die Bereiche technisches Zeichnen, Architekturdarstellung, Kunst, Malerei, Kartografie und Computergrafik.
Früher war die darstellende Geometrie das einzige Mittel, um räumliche Objekte anschaulich darzustellen. Heute liegt die Bedeutung eher im Training der Benutzer geometrischer Software, damit sie verstehen, was eine 3D-Grafiksoftware kann und an Eingaben verlangt.
Räumliche Darstellung durch Computer
Die Computergrafik ist ein Teilgebiet der Informatik, das sich mit der computergestützten Bilderzeugung befasst. Bildsynthese bezeichnet in der Computergrafik die Erzeugung eines Bildes aus Rohdaten.
Modellierung von Objekten in einer Szene
Die Geometrische Modellierung bezeichnet die computergestützte Beschreibung der Form geometrischer Objekte. Sie beschäftigt sich sowohl mit der Beschreibung von zweidimensionalen Kurven als auch von dreidimensionalen Flächen und Körpern. Mit Drahtgittermodell bezeichnet man eine Darstellungsart in der Computergrafik, die Objekte in dieser Form anzeigt, auch wenn sie auf andere Weise modelliert wurden.
Die Position eines Objektes in einer Szene wird durch Koordinaten in einem Koordinatensystem bestimmt. Der Blickwinkel auf die Szene und die Größe der fertigen Szene werden durch Koordinatentransformationen verändert. Eine räumliche Wahrnehmung wird unter anderem dadurch erzeugt, dass undurchsichtige Objekte im Vordergrund Teile von weiter entfernten Objekten verdecken.
Materialeigenschaften, Beleuchtung und Schatten
Computergrafiken verwenden den RGB-Farbraum. Transparente Objekte können durch Farbmischungen abgebildet werden. In der Computergrafik verwendet man Texturen als „Überzug“ für 3D-Modelle, um der Oberfläche Struktur zu geben, ohne dabei jedoch den Detailgrad der Geometrie zu erhöhen.
Als Beleuchtungsmodell bezeichnet man in der 3D-Computergrafik allgemein ein Verfahren, das das Verhalten von Licht simuliert. Meist ist damit ein lokales Beleuchtungsmodell gemeint, das die Oberfläche von Objekten simuliert.
Schatten dienen in der Computergrafik zur Verankerung von Objekten in einer Szene. So kann man Aussagen über die Lage der Objekte in der Szene machen (Tiefe, Abstand zur Fläche). Weiterhin wird durch einen Schatten die Richtung der Beleuchtung hervorgehoben.
Optimierung der Rechenleistung
Für die Berechnung einer detailgetreuen 3D-Darstellung benötigt ein Computer viel Rechenleistung. Um die benötigte Rechenleistung der Bildsynthese zu reduzieren, setzt man meist auf gleichzeitiges Nutzen von hoher Detailgenauigkeit im Nahbereich und niedriger Detailstufe im Fernbereich. Als Level of Detail bezeichnet man die verschiedenen Detailstufen bei der Darstellung virtueller Welten.
Ein 3D-Beschleuniger ist eine Erweiterung der Grafikkarte eines Personal Computers, die auf die Berechnung und Darstellung dreidimensionaler Objekte spezialisiert ist. Auf Geräten, deren Hardware deutlich weniger Rechenleistung bietet, verwendet man für alle Entfernungsbereiche eine niedrige Detailstufe. Zur Abgrenzung gegenüber höheren Detailstufen wird das Ergebnis manchmal z. B. als 2,5D Ansicht bezeichnet.
Stereoskopie
Stereoskopie ist die Wiedergabe von Bildern mit einem räumlichen Eindruck von Tiefe. Sie befasst sich damit, in das linke und rechte Auge jeweils unterschiedliche zweidimensionale Bilder aus zwei leicht abweichenden Betrachtungswinkeln zu bringen. Dazu können Hilfsmittel erforderlich sein.
Hilfsmittel
- Eine 3D-Brille ist eine spezielle Brille, die bei einigen stereoskopischen Verfahren (3D-Foto, 3D-Film) benötigt wird, um die räumliche Tiefenwirkung sichtbar zu machen.
- Ein Virtual-Reality-Headset ist eine Art eines Head-Mounted Displays, welches den Nutzern Einblick in die virtuelle Realität verschafft.
Raumklang bei der Wiedergabe von Tonaufnahmen
Raumklang bezeichnet den räumlichen Klangeindruck bei der Wiedergabe von Tonaufnahmen. Mit Stereofonie werden Techniken bezeichnet, die mit Hilfe von zwei oder mehr Schallquellen einen räumlichen Schalleindruck beim natürlichen Hören erzeugen.
Räume mit mehr als drei Dimensionen
Räume mit mehr als drei Dimensionen werden als Hyperräume bezeichnet. Ein Beispiel für solch einen Raum ist die Raumzeit als gemeinsame Darstellung des dreidimensionalen Raums und der eindimensionalen Zeit in einer vierdimensionalen mathematischen Struktur. Für vierdimensionale Räume hat sich im Allgemeinen die Bezeichnung 4D etabliert.
Siehe auch
- 4D
- 5D
Literatur
- Alfred Nischwitz, Max Fischer, Peter Haberäcker, Gudrun Socher: Computergrafik Band 1. 4. Auflage. Springer Vieweg, Wiesbaden 2019, ISBN 978-3-658-25383-7.
Weblinks
- Physikalischer Raum (klassisch), Euklidischer Raum, Vektorraum, Koordinatensysteme und Bezugssysteme, Rene Matzdorf, UNIVERSITÄT KASSEL - INSTITUT FÜR PHYSIK, 24. November 2019, abgerufen am 25. März 2023
Einzelnachweise
- Definition of 3D noun from the Oxford Advanced Learner's Dictionary. Oxford Learner's Dictionaries, abgerufen am 19. März 2023 (englisch).
- „3-D“, bereitgestellt durch das Digitale Wörterbuch der deutschen Sprache. DWDS – Digitales Wörterbuch der deutschen Sprache, abgerufen am 19. März 2023.
- Bronstein, Semendjajew, Taschenbuch der Mathematik, Lizenzausgabe für den Verlag Harri Deutsch, Thun, 1980, S. 266–267
- Frank Wilczek, Fundamentals, Verlag C.H.Beck oHG, 2021, ISBN 978-3-406-77551-2, S. 33 und 50–51
- Richard Knerr, Mathematik, Lizenzausgabe für die Mitglieder der Büchergilde Gutenberg, 1973, ISBN 3-7632-1722-3, S. 302
- Bronstein, Semendjajew, Taschenbuch der Mathematik, Lizenzausgabe für den Verlag Harri Deutsch, Thun, 1980, S. 267
- Bronstein, Semendjajew, Taschenbuch der Mathematik, Lizenzausgabe für den Verlag Harri Deutsch, Thun, 1980, S. 267
- Autor=Alfred Nischwitz, Max Fischer, Peter Haberäcker, Gudrun Socher: Computergrafik Band 1. Springer Vieweg, Wiesbaden 2019, ISBN 978-3-658-25383-7, S. 35.
Autor: www.NiNa.Az
Veröffentlichungsdatum:
wikipedia, wiki, deutsches, deutschland, buch, bücher, bibliothek artikel lesen, herunterladen kostenlos kostenloser herunterladen, MP3, Video, MP4, 3GP, JPG, JPEG, GIF, PNG, Bild, Musik, Lied, Film, Buch, Spiel, Spiele, Mobiltelefon, Mobil, Telefon, android, ios, apple, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, computer, komputer, Informationen zu Dreidimensionalität, Was ist Dreidimensionalität? Was bedeutet Dreidimensionalität?
Der Titel dieses Artikels ist mehrdeutig Weitere Bedeutungen sind unter 3D Begriffsklarung aufgefuhrt 3D oder 3 D ist eine verbreitete Abkurzung fur die Eigenschaft tatsachlich oder nur scheinbar raumlich oder dreidimensional zu sein oder drei Dimensionen zu haben Ursprunglich ein Begriff aus der englischen Sprache wurde die Abkurzung bei der Ubernahme technischer Begriffe aus dem Englischen in die deutsche Sprache ubernommen z B in 3D Film 3D Druck 3D Integration oder 3D Effekt Dreidimensionales Kartesisches Koordinatensystem mit der x der y und der z Koordinatenachse3D Effekt einer Kugel Inzwischen verwenden viele Anwendungsgebiete die Vorsilbe 3D in ihren Fachausdrucken Dadurch unterscheiden sie zwischen der Verwendung eines Ausdrucks in Bezug auf dreidimensionale oder zweidimensionale Objekte Die Punkte von 3D Objekten liegen in verschiedenen Ebenen oder Flachen wahrend die Punkte von 2D Objekten in derselben Ebene oder Flache liegen Im Alltag wird ein dreidimensionaler Raum durch die drei Dimensionen Lange Breite und Hohe beschrieben Die Geometrie nennt diesen Raum den dreidimensionalen euklidischen Raum Oft wird die Lage eines Punktes im Raum mit einem kartesischen Koordinatensystem beschrieben Daneben verwendet man auch andere Koordinatensysteme z B Kugelkoordinaten oder Zylinderkoordinaten Die moderne Mathematik definiert einen dreidimensionalen mathematischen Raum als einen Raum in dem drei Koordinaten erforderlich sind um die Lage eines Punktes zu bestimmen Diese allgemeingultige Definition enthalt den Raum den wir aus dem Alltag kennen als Spezialfall GrundlageDreidimensionaler euklidischer Raum Im Alltag benutzt man den Begriff Raum z B im Zusammenhang mit einer Kiste oder einem Zimmer Daher kennt man auch die drei voneinander unabhangigen Dimensionen Lange Hohe und Breite Die Mathematik bezeichnet diesen Raum unserer Anschauung in Abgrenzung zu anderen mathematischen Raumen als dreidimensionalen euklidischen Raum Im euklidischen Raum kann man raumliche Beziehungen zwischen verschiedenen Punkten z B ihren Abstand mit Methoden der analytischen Geometrie berechnen Die analytische Geometrie liefert korrekte Ergebnisse solange die Entfernungen im physikalisch relevanten Bereich liegen siehe Entfernungsmessung Die Physik definiert ein Bezugssystem im euklidischen Raum um das Verhalten von Objekten im Raum eindeutig und vollstandig zu beschreiben Zum Bezugssystem gehort ein Koordinatensystem Ein Koordinatensystem macht gegenuber dem euklidischen Raum zusatzliche Annahmen Diese Annahmen sind die Lage des Koordinatenursprungs und die Richtungen der Koordinatenachsen Beide sind nicht von der Natur vorgegeben Mit Hilfe des Koordinatensystems kann man die Lage eines Punktes im Raum festlegen Dabei ordnet man jedem Punkt im Raum drei Raumkoordinaten zu Beispiele fur dreidimensionale Koordinatensysteme Kartesisches Koordinatensystem Das kartesische Koordinatensystem bestimmt drei Achsen im Raum von denen jede auf den beiden anderen senkrecht steht und die sich in einem Punkt dem Ursprung schneiden Man erhalt die drei Koordinaten indem man die senkrechten Projektionen des Punktes auf die drei Koordinatenachsen bildet und diese wiederum als Zahlengeraden auffasst Die Lage eines Punktes beschreibt ein Tupel aus drei Koordinaten x y z displaystyle x y z Krummlinige Koordinatensysteme Zylinderkoordinaten beschreiben die Lage eines Punktes mit Werten fur den Winkel zu einer Querachse den Abstand zur Mittelachse also ebene Polarkoordinaten und die Hohe ps r h displaystyle psi rho h Kugelkoordinaten beschreiben die Lage eines Punktes mit Werten fur den Abstand zum Mittelpunkt und zwei Winkel r ϕ 8 displaystyle r phi theta Koordinatensysteme fur die Beschreibung der Erdoberflache Fur die Beschreibung der Lage eines Punktes auf der Erdoberflache gibt es spezielle zweidimensionale Koordinatensysteme mit einer zusatzlichen Hohenkoordinate B L H displaystyle B L H wobei B L displaystyle B L geografische Koordinaten bedeuten X Y H displaystyle X Y H mit X Y displaystyle X Y als Gauss Kruger KoordinatensystemDimensionen im mathematischen Raum Die moderne Mathematik definiert einen n dimensionalen Raum Rn displaystyle mathbb R n ganz allgemein als eine Menge mathematischer Objekte mit einer Struktur Der Spezialfall eines dreidimensionalen Raums heisst R3 displaystyle mathbb R 3 R3 displaystyle mathbb R 3 kann Raume mit beliebigen Dimensionen beschreiben Dabei gilt die Bedingung dass die Dimensionen voneinander unabhangig sind Das heisst man kann die Lage eines Punktes durch das Andern einer einzigen Koordinate im Raum verschieben So kann man z B die Lage eines Bildpunktes im RGB Farbraum durch drei Intensitatswerte fur die drei Grundfarben beschreiben Wenn R3 displaystyle mathbb R 3 den dreidimensionalen euklidischen Raum beschreibt wird die Lage einzelner Punkte im Raum in der Regel durch Vektoren im geometrischen Sinn beschrieben Geometrische KorperEin Korper ist in der Geometrie eine dreidimensionale Figur die durch ihre Oberflache beschrieben werden kann Der raumliche Inhalt eines geometrischen Korpers ist das Volumen Die Orientierung eines festen Korpers im dreidimensionalen euklidischen Raum kann durch die eulerschen Winkel beschrieben werden 3D Modellierung am ComputerEin existierendes Objekt kann mit einem 3D Scanner erfasst werden Daraus kann der Computer ein geometrisches Modell fur die Weiterverarbeitung erstellen CAD ist eine Methode fur das rechnerunterstutzte Erzeugen und Andern der geometrischen Modelle von Objekten Ein besonderer Vorteil des 3D CAD ist die Moglichkeit von den Objekten eine Abbildung aus beliebiger Richtung zu erzeugen Der 3D Drucker ermoglicht den auch im Hobbybereich angewendeten Ubergang vom virtuellen Modell zum realen Objekt Zusammen mit den erfassbaren Materialeigenschaften werden erweiterte CAD Modelle zur Beschreibung der physikalischen Eigenschaften zum Beispiel Festigkeit Elastizitat der Objekte erstellt Digital Prototyping ist ein aus dem Amerikanischen stammender Begriff aus dem Gebiet des Maschinenbau Ingenieurwesens er bezeichnet eine Vorgehensweise in der technischen Entwicklung 3D Visualisierung bezeichnet die Konvertierung von technischen Zeichnungen und zweidimensionalen Daten zu dreidimensionalen virtuellen Modellen oder Raumen Ausserdem hat sich die interaktive 3D Visualisierung inzwischen als Standardmethode etabliert um grosse Datenmengen z B aus Wissenschaft und Forschung oder dem Finanzwesen zu untersuchen Computer konnen aus Modellen auch eine virtuelle Realitat erzeugen Als virtuelle Realitat wird die Darstellung und gleichzeitige Wahrnehmung einer scheinbaren Wirklichkeit und ihrer physikalischen Eigenschaften in einer in Echtzeit computergenerierten interaktiven virtuellen Umgebung bezeichnet Wahrnehmung von DreidimensionalitatStereoskopisches Sehen vermittelt durch die beidaugige Betrachtung von Objekten und Gegenstanden eine Tiefenwahrnehmung Diese ist grundlegend fur die Raumwahrnehmung Beim Horen fuhrt die Lokalisation von Schallquellen zur Raumwahrnehmung Raumliche Darstellung in einer EbeneDarstellende Geometrie Hauptartikel Darstellende Geometrie Die Darstellende Geometrie ist der Teilbereich der Geometrie der sich mit den geometrisch konstruktiven Verfahren von Projektionen dreidimensionaler Objekte auf eine zweidimensionale Darstellungsebene befasst Zu den Anwendungsbereichen gehoren die Bereiche technisches Zeichnen Architekturdarstellung Kunst Malerei Kartografie und Computergrafik Fruher war die darstellende Geometrie das einzige Mittel um raumliche Objekte anschaulich darzustellen Heute liegt die Bedeutung eher im Training der Benutzer geometrischer Software damit sie verstehen was eine 3D Grafiksoftware kann und an Eingaben verlangt Raumliche Darstellung durch Computer Hauptartikel Computergrafik Die Computergrafik ist ein Teilgebiet der Informatik das sich mit der computergestutzten Bilderzeugung befasst Bildsynthese bezeichnet in der Computergrafik die Erzeugung eines Bildes aus Rohdaten Modellierung von Objekten in einer Szene Die Geometrische Modellierung bezeichnet die computergestutzte Beschreibung der Form geometrischer Objekte Sie beschaftigt sich sowohl mit der Beschreibung von zweidimensionalen Kurven als auch von dreidimensionalen Flachen und Korpern Mit Drahtgittermodell bezeichnet man eine Darstellungsart in der Computergrafik die Objekte in dieser Form anzeigt auch wenn sie auf andere Weise modelliert wurden Die Position eines Objektes in einer Szene wird durch Koordinaten in einem Koordinatensystem bestimmt Der Blickwinkel auf die Szene und die Grosse der fertigen Szene werden durch Koordinatentransformationen verandert Eine raumliche Wahrnehmung wird unter anderem dadurch erzeugt dass undurchsichtige Objekte im Vordergrund Teile von weiter entfernten Objekten verdecken Materialeigenschaften Beleuchtung und Schatten Computergrafiken verwenden den RGB Farbraum Transparente Objekte konnen durch Farbmischungen abgebildet werden In der Computergrafik verwendet man Texturen als Uberzug fur 3D Modelle um der Oberflache Struktur zu geben ohne dabei jedoch den Detailgrad der Geometrie zu erhohen Als Beleuchtungsmodell bezeichnet man in der 3D Computergrafik allgemein ein Verfahren das das Verhalten von Licht simuliert Meist ist damit ein lokales Beleuchtungsmodell gemeint das die Oberflache von Objekten simuliert Schatten dienen in der Computergrafik zur Verankerung von Objekten in einer Szene So kann man Aussagen uber die Lage der Objekte in der Szene machen Tiefe Abstand zur Flache Weiterhin wird durch einen Schatten die Richtung der Beleuchtung hervorgehoben Optimierung der Rechenleistung Fur die Berechnung einer detailgetreuen 3D Darstellung benotigt ein Computer viel Rechenleistung Um die benotigte Rechenleistung der Bildsynthese zu reduzieren setzt man meist auf gleichzeitiges Nutzen von hoher Detailgenauigkeit im Nahbereich und niedriger Detailstufe im Fernbereich Als Level of Detail bezeichnet man die verschiedenen Detailstufen bei der Darstellung virtueller Welten Ein 3D Beschleuniger ist eine Erweiterung der Grafikkarte eines Personal Computers die auf die Berechnung und Darstellung dreidimensionaler Objekte spezialisiert ist Auf Geraten deren Hardware deutlich weniger Rechenleistung bietet verwendet man fur alle Entfernungsbereiche eine niedrige Detailstufe Zur Abgrenzung gegenuber hoheren Detailstufen wird das Ergebnis manchmal z B als 2 5D Ansicht bezeichnet Stereoskopie Hauptartikel Stereoskopie Stereoskopie ist die Wiedergabe von Bildern mit einem raumlichen Eindruck von Tiefe Sie befasst sich damit in das linke und rechte Auge jeweils unterschiedliche zweidimensionale Bilder aus zwei leicht abweichenden Betrachtungswinkeln zu bringen Dazu konnen Hilfsmittel erforderlich sein Hilfsmittel Eine 3D Brille ist eine spezielle Brille die bei einigen stereoskopischen Verfahren 3D Foto 3D Film benotigt wird um die raumliche Tiefenwirkung sichtbar zu machen Ein Virtual Reality Headset ist eine Art eines Head Mounted Displays welches den Nutzern Einblick in die virtuelle Realitat verschafft Raumklang bei der Wiedergabe von TonaufnahmenRaumklang bezeichnet den raumlichen Klangeindruck bei der Wiedergabe von Tonaufnahmen Mit Stereofonie werden Techniken bezeichnet die mit Hilfe von zwei oder mehr Schallquellen einen raumlichen Schalleindruck beim naturlichen Horen erzeugen Raume mit mehr als drei DimensionenRaume mit mehr als drei Dimensionen werden als Hyperraume bezeichnet Ein Beispiel fur solch einen Raum ist die Raumzeit als gemeinsame Darstellung des dreidimensionalen Raums und der eindimensionalen Zeit in einer vierdimensionalen mathematischen Struktur Fur vierdimensionale Raume hat sich im Allgemeinen die Bezeichnung 4D etabliert Siehe auch4D 5DLiteraturAlfred Nischwitz Max Fischer Peter Haberacker Gudrun Socher Computergrafik Band 1 4 Auflage Springer Vieweg Wiesbaden 2019 ISBN 978 3 658 25383 7 WeblinksWiktionary 3 D Bedeutungserklarungen Wortherkunft Synonyme Ubersetzungen Commons 3D Sammlung von Bildern Videos und Audiodateien Physikalischer Raum klassisch Euklidischer Raum Vektorraum Koordinatensysteme und Bezugssysteme Rene Matzdorf UNIVERSITAT KASSEL INSTITUT FUR PHYSIK 24 November 2019 abgerufen am 25 Marz 2023EinzelnachweiseDefinition of 3D noun from the Oxford Advanced Learner s Dictionary Oxford Learner s Dictionaries abgerufen am 19 Marz 2023 englisch 3 D bereitgestellt durch das Digitale Worterbuch der deutschen Sprache DWDS Digitales Worterbuch der deutschen Sprache abgerufen am 19 Marz 2023 Bronstein Semendjajew Taschenbuch der Mathematik Lizenzausgabe fur den Verlag Harri Deutsch Thun 1980 S 266 267 Frank Wilczek Fundamentals Verlag C H Beck oHG 2021 ISBN 978 3 406 77551 2 S 33 und 50 51 Richard Knerr Mathematik Lizenzausgabe fur die Mitglieder der Buchergilde Gutenberg 1973 ISBN 3 7632 1722 3 S 302 Bronstein Semendjajew Taschenbuch der Mathematik Lizenzausgabe fur den Verlag Harri Deutsch Thun 1980 S 267 Bronstein Semendjajew Taschenbuch der Mathematik Lizenzausgabe fur den Verlag Harri Deutsch Thun 1980 S 267 Autor Alfred Nischwitz Max Fischer Peter Haberacker Gudrun Socher Computergrafik Band 1 Springer Vieweg Wiesbaden 2019 ISBN 978 3 658 25383 7 S 35 Dieser Artikel ist als Audiodatei verfugbar source source Speichern 08 50 Minuten 7 8 MB Text der gesprochenen Version 16 Dezember 2011 Mehr Informationen zur gesprochenen Wikipedia