Ein Koordinatenmessgerät beruht auf dem Prinzip der Koordinatenmesstechnik und beinhaltet ein zur Messung räumlicher Koo
Koordinatenmessgerät

Ein Koordinatenmessgerät beruht auf dem Prinzip der Koordinatenmesstechnik und beinhaltet ein zur Messung räumlicher Koordinaten geeignetes Messsystem. Es besteht aus einem Messkopfsystem (schaltender oder messender Sensor), dessen Messbereich durch ein Verfahr- bzw. Positioniersystem mit inkrementeller Weg- oder Winkelsensorik erweitert wird. Darüber hinaus sind weitere Soft- und Hardwarekomponenten zur Auswertung der erfassten Koordinatenwerte, zur rechnerischen Korrektur systematischer Messabweichung und zur Steuerung der Verfahrachsen erforderlich.
Ein rein mechanisch-analoger Vorläufer ist der Koordinatograf.
Grundprinzip und Anwendungsgebiete
Grundbauarten
Ein Koordinatenmesssystem verfügt über ein CNC-gesteuertes Positioniersystem oder ein handgeführtes Verfahrsystem, mit dem das Messkopfsystem (Sensor) und das Messobjekt in ihrer räumlichen Lage relativ zueinander bewegt werden, um die jeweiligen Messpunkte zu erfassen. Jeder Verfahrachse des Positioniersystems ist mindestens ein Längenmesssystem zugeordnet, das die jeweilige Position mit feiner Auflösung misst. Einzelne Sensormesspunkte können aufgrund der bekannten Positionen der Positioniereinheit somit in ein gemeinsames Koordinatensystem transformiert und miteinander verknüpft werden.
Üblicherweise dienen als Längenmesssysteme zur relativen Positionsbestimmung der Achsen inkrementale Längenmesssysteme mit elektronischer Messwerterfassung und mit Maßverkörperungen auf materieller (z. B. Glasmaßstab) oder optischer (z. B. Laserinterferometer) Basis.
Der Messbereich und das Gerätekoordinatensystem werden durch die Verfahrachsen und deren Führungen, Antriebe und inkrementale Messsysteme festgelegt. Koordinatenmesssysteme konventioneller Bauart besitzen ein kartesisches Gerätekoordinatensystem. Koordinatenmesssysteme, deren Führungen ein Zylinder- oder Kugelkoordinatensystem aufspannen, sind aber ebenfalls verbreitet und arbeiten mit einer Kombination aus inkrementaler Weg- und Winkelsensorik.
Konventionelle Bauweise – kartesisches Gerätekoordinatensystem
Die am häufigsten eingesetzten „klassischen“ Geräte sind kartesisch rechtwinklige Koordinatenmesssysteme. Die orthogonalen Führungen spannen ein kartesisches Koordinatensystem auf. Wesentliche Bau- und Funktionsgruppen eines kartesischen Koordinatenmessgerätes sind:
- Messtisch: meist Hartgestein.
- Maßverkörperungen für die einzelnen Achsen: z. B. fotoelektrisches inkrementales Längenmesssystem mit Zerodur-Maßstäben (geringer thermischer Ausdehnungskoeffizient).
- Lagerung der einzelnen Achsen: z. B. aerostatische Lager (Luftlager) zur Realisierung einer geringen Reibung zwischen den einzelnen beweglichen Komponenten. Führungsbahnen aus Hartgestein (Granit).
- Antrieb: z. B. wird bei CNC-gesteuerten KMGs die Bewegung der Achsen durch elektrische Antriebe (inkl. Getriebe und schwingungsdämpfende Elemente) in einem geschlossenen Regelkreis realisiert. Aufgabe des Antriebssystems ist nur die Bewegung der Achsen, nicht das Bereitstellen der Information über die Position der Achsen. Diese Aufgabe wird vom Längenmesssystem übernommen, welches die aktuelle Position an den Steuer- (zur Positionierung) und Auswerterechner (zur Berechnung der angetasteten Koordinatenwerte) übermittelt.
- Mess- und Tastsysteme: siehe Abschnitt Sensoren.
- Steuer- und Auswerterechner: Zur Steuerung des Messablaufs und der Verfahrbewegungen, zur Regelung der Position oder Trajektorie (z. B. Variation der Verfahrgeschwindigkeit), zur Manipulation der gemessenen Werte hinsichtlich einer rechnerischen Korrektur systematischer Messabweichungen (mit Hilfe zuvor bestimmter Kalibrierwerte) und hinsichtlich der Transformation der Koordinatenwerte sowie der Auswertung der Messpunkte gemäß dem zugeordneten Geometrieelement.
Gemäß DIN EN ISO 10360-1:2003 unterscheidet man folgende Grundbauarten zur Realisierung von drei zueinander rechtwinklig beweglichen Führungen:
- Auslegerbauweise: Ein Auslegerarm, an dem das Messkopfsystem befestigt ist, ist in vertikaler Richtung beweglich. Zwei weitere Achsen sind jeweils senkrecht zueinander in horizontaler Richtung beweglich. Die horizontale Bewegung kann entweder durch einen beweglichen Tisch oder bei einem feststehenden Tisch durch bewegliche Aufbauelemente des Auslegers realisiert werden. Meist wird diese Bauweise für Messgeräte mit kleinem Messbereich, aber sehr guter Messgenauigkeit eingesetzt.
- Brückenbauweise: Die beweglichen Achsen und der Aufspannbereich sind voneinander getrennt. Die in horizontaler Richtung bewegliche Brücke trägt die Pinole mit dem Messkopfsystem, welche in horizontaler Richtung entlang der Brücke und in vertikaler Richtung bewegt werden kann. Koordinatenmessgeräte in Brückenbauweise ermöglichen einen großen Messbereich und damit das Erfassen sehr großer Werkstücke bis hin zu ganzen Fahrzeugen oder Komponenten aus dem Flugzeugbau.
- Portalbauweise: An dem Portalquerbalken ist die das Messkopfsystem tragende Pinole (vertikale Bewegung) angeordnet, welche in horizontaler Richtung entlang des Portalquerbalkens beweglich ist. Das Portal ist mit zwei Füßen an den Rändern des Gerätetisches gelagert und in horizontaler Richtung entlang des Gerätetisches beweglich. Ebenfalls sind Bauweisen mit feststehendem Portal und beweglichen Gerätetisch verbreitet. Koordinatenmesssysteme in Portalbauweise bieten geringe Messabweichungen bei gleichzeitig guter Zugänglichkeit und ausreichend großem Messbereich. Sie stellen daher die häufigste Bauweise dar. Üblich ist ein Messbereich von etwa 1 m³.
- Ständerbauweise: Bei einem Koordinatenmesssystem in Ständerbauweise mit Horizontalarm ist die Pinole mit dem Messkopfsystem in horizontaler Richtung beweglich, welche entlang eines Ständers (auch Säule genannt) in vertikaler Richtung bewegt werden kann. Die zweite horizontale Bewegung kann durch Verfahren des Ständers entlang des Messtisches oder durch einen beweglichen Tisch realisiert werden. Diese Bauweise wird häufig zur Messung von Karosserien und großen Blechbauteilen genutzt, da drei Seiten des Messbereichs frei zugänglich sind.
- Grundbauarten von Koordinatenmesssystemen gemäß DIN EN ISO 10360-1:2003
- Auslegerbauweise
- Brückenbauweise
- Portalbauweise
- Ständerbauweise mit beweglichem Horizontalarm
Unkonventionelle Bauart – Zylinder- oder Kugelkoordinatensystem
Koordinatenmesssysteme unkonventioneller Bauart messen in Zylinder- oder Kugelkoordinaten. Hierzu zählen Lasertracker, Gelenkarmmessgeräte und Röntgen-Computertomographie.
Unkonventionelle Bauart – Mikro- und Nanokoordinatenmesssysteme
Zur Reduktion der Messabweichungen – verursacht durch zufällige und systematische rotatorische Führungsabweichungen – werden bei Mikro- und Nanokoordinatenmessgeräten unkonventionelle Anordnungen der Längenmess- und Antriebssysteme eingesetzt. Durch Realisierung des abbeschen Komparatorprinzips in mehreren Messachsen, den Einsatz von laserinterferometrischen Längenmesssystemen und einer Parallelmetrologie, welche alle Positionswerte direkt an dem in allen drei Achsen beweglichen Sensor oder der in allen drei Achsen beweglichen Plattform mit dem Messobjekt misst, lassen sich die Messabweichungen und Messunsicherheiten signifikant reduzieren.
Erweiterungen
Durch den Einsatz eines zusätzlichen Drehtisches oder einer Dreh-Schwenk-Einrichtung können auch ungünstig gelegene Messelemente angetastet werden. Mit derartigen Erweiterungen kann das Werkstück in ein oder mehreren Achsen rotiert werden. Die veränderte Position des Werkstücks wird bei der Berechnung und Transformation der gemessenen Koordinatenwerte in das Werkstückkoordinatensystem berücksichtigt. Alternativ oder zusätzlich werden auch Dreh-Schwenk-Einrichtungen für die Sensoren eingesetzt.
Sensoren
Koordinatenmesssysteme können mit schaltenden und messenden Sensoren ausgestattet sein. Schaltende Sensoren liefern beim Aufnehmen eines Messpunktes lediglich ein Triggersignal, welches das Auslesen der Längenmesssysteme initiiert. Messende Sensoren haben hingegen intern einen eigenen Messbereich von wenigen Millimetern. Der intern gemessene Sensorwert wird dabei mit der von den Längenmesssystemen bestimmten Position des Sensors überlagert.
Sensoren für Koordinatenmesssysteme kann man ebenfalls hinsichtlich ihres physikalischen Prinzips unterteilen. Bis in die 90er Jahre waren taktile Sensoren die meist genutzten Antastsensoren bei Koordinatenmessgeräten. Mit verbesserter Sensortechnik, leistungsfähigerer Rechentechnik und gestiegenen Anforderungen werden heutzutage vermehrt auch optische, opto-taktile und Röntgen-Sensoren eingesetzt. Eine Übersicht über Sensoren in Koordinatenmesssystemen ist ebenfalls in gegeben.
Um die Universalität von Koordinatenmesssystemen zu steigern, können auch mehrere unterschiedliche Sensorprinzipien in einem Koordinatenmesssystem vereint werden. Diese Koordinatenmesssysteme werden Multisensorkoordinatenmesssysteme genannt.
Da es mit einem einzigen Sensor bzw. Taster nicht möglich ist alle Messaufgaben zu lösen, ist es bei den meisten Koordinatenmesssystemen möglich diese auszutauschen. Mit Tasterwechseleinrichtungen kann der Wechsel in den automatischen Messablauf eingebunden werden.
Mechanische (taktile) Antastung
Messkopfsysteme mit taktilen Sensoren werden in schaltende Systeme (z. B. basierend auf dem elektro-mechanischen Prinzip) und messende Systeme (z. B. mit induktiv oder kapazitiv messenden Sensoren) unterteilt.
Die Antastung auf der Werkstückoberfläche wird durch Messtaster durchgeführt. Je nach Messaufgabe können hierfür unterschiedliche geometrische Formen des Tastelementes (meist Kugeln) und Materialien (oft Industrierubin, Hartmetall, Siliziumnitrid) eingesetzt werden. Die taktilen Sensorsysteme sind dem menschlichen Tastsinn nachempfunden, sodass nicht nur einzelne Berührungen, sondern auch großflächige Druckverteilungen erkannt werden können.
Da bei der Antastung eine Messkraft in der Größenordnung von 0,01 N bis 0,2 N wirkt, biegt sich der Taststift, was bei der Messung berücksichtigt werden muss. Die Biegung des Taststiftes wird beim Einmessen der Taster (Taststiftkalibrierung, Tasterqualifikation) berücksichtigt und bei den folgenden Messungen automatisch korrigiert. Zusätzlich wird beim Einmessen des Tasters der Durchmesser bestimmt und bei mehreren Tastelementen der Bezug zueinander hergestellt (z. B. bei Sterntaster die Abstände der Mittelpunkte der Tastkugeln zueinander). Das Einmessen des Tasters erfolgt an einem sehr genauen Kugelnormal (Formabweichung < 0,2 µm), das mit jedem verwendeten Taster an mindestens fünf oder mehr Punkten entsprechend einer vom Gerätehersteller definierten Einmessstrategie angetastet wird.
Das punktweise Erfassen der Werkstückoberfläche ist ihrem Wesen nach vergleichbar mit dem Ziehen einer Stichprobe aus der unendlich großen Gesamtheit aller Oberflächenpunkte. Die Bereiche zwischen den aufgenommenen Messpunkten werden nicht erfasst und infolgedessen bei der Auswertung nicht berücksichtigt. Je mehr Messpunkte aufgenommen werden, desto mehr Informationen über die Oberfläche des Werkstückes werden erfasst und in die Auswertung einbezogen (der Umfang der Stichprobe wird größer). Das Antasten einzelner Punkte erfordert bei großen Messpunktzahlen erhebliche, meist nicht akzeptable Messzeiten.
Beim Scannen wird die Tastkugel mit Hilfe besonderer Steuerfunktionen berührend entlang der Oberfläche des Werkstücks bewegt. Während der Bewegung werden laufend Messwerte übernommen. Neuere Geräte lassen hohe Scanning-Geschwindigkeiten zu, mit denen wie bei der Formmesstechnik sehr große Messpunktzahlen in geringer Messzeit erreicht werden können. Dies kann zu einer erhöhten Aussagesicherheit führen, obwohl die Einzelpunkt-Unsicherheit beim Scannen deutlich größer ist als beim Antasten einzelner Punkte. Das Scannen gewinnt daher gegenüber dem Einzelpunkt-Betrieb immer mehr an Bedeutung.
Normen und Richtlinien, welche direkt auf die taktile Antastung bei Koordinatenmessungen eingehen, sind DIN EN ISO 10360-4:2002, DIN EN ISO 10360-5:2010 und VDI/VDE 2617 Blatt 12.1.
Berührungslose Antastung
Zur berührungslosen Antastung können optische, elektrische und röntgentomographische Sensoren eingesetzt werden. Prinzipiell kann jeder elektrische oder optische Sensor in Koordinatenmesssystemen eingesetzt werden, um dessen Messbereich mit Hilfe des Positioniersystems zu erweitern.
Optische Abstandssensoren
- Triangulationssensoren (z. B. Lasertriangulation, Liniensensor, Photogrammetrie, Streifenprojektion)
- Bilderverarbeitungssensoren (z. B. Kantenfinder, Binär-Verarbeitung, Grauwert-Verarbeitung)
- Fokusvariation (Kontrastverfahren, z. B. Autofokus)
- Konfokalsensoren (z. B. chromatischer Konfokalsensor, Foucault-Sensor bzw. Laserfokusverfahren)
- Interferometer (z. B. Laserinterferometer, Weißlichtinterferometer)
Elektrische Abstandssensoren
- Tunnelstromsensoren (z. B. schaltend oder Tunnelstrommessung)
Röntgentomographische Sensoren
- Bestehend aus einer Röntgenröhre und einem Detektor (die durch ein Messobjekt, welches sich zwischen Röntgenröhre und Detektor befindet und durchstrahlt wird, abgeschwächte Röntgenstrahlung wird gemessen)
Normen und Richtlinien, welche auf die berührungslose Antastung bei Koordinatenmessungen eingehen, sind DIN EN ISO 10360-7:2011, DIN EN ISO 10360-8:2012, VDI/VDE 2617 Blatt 6.1 und VDI/VDE 2617 Blatt 6.2.
Weiterentwickelte Gerätetechnik
Multisensorkoordinatenmessgeräte – Messen mit mehreren Sensoren
Eine besonders hohe Universalität wird durch die Kombination mehrerer unterschiedlicher Sensoren in einem Koordinatenmessgerät erreicht. Für jedes zu messende Merkmal kann der optimale Sensor ausgewählt werden. Die Messergebnisse der unterschiedlichen Sensoren liegen in einem gemeinsamen Koordinatensystem vor. Hierfür wird die Position der Sensoren vorab zueinander eingemessen. Dies ermöglicht es, die Ergebnisse verschiedener Sensoren zu kombinieren, um Merkmale zu messen, die mit einem Sensor allein nicht oder nur schlecht messbar sind.
Die verschiedenen Sensoren werden entweder an einer Wechselschnittstelle an der Pinole des Koordinatenmessgerätes befestigt und im Messablauf nacheinander automatisch eingewechselt (Sensorwechsler), oder sind dauerhaft an der vertikal positionierbaren Pinole nebeneinander angeordnet. Durch Geräte mit mehreren Pinolen, die eine getrennte vertikale Positionierung der einzelnen Sensoren zulassen, ist das Kollisionsrisiko verringert. Ebenso werden Sensoren auch mittels Rückzugsachsen an der Pinole befestigt und nur bei Bedarf ausgefahren, wodurch sich Kollisionen vermeiden lassen.
Normen und Richtlinien mit direktem Bezug zu Koordinatenmesssystemen mit Multisensorik sind DIN EN ISO 10360-9:2011 und VDI/VDE 2617 Blatt 6.3.
Portable Koordinatenmessgeräte
Während herkömmliche Koordinatenmessgeräte (KMG) eine Sonde verwenden, die sich auf drei kartesischen Achsen bewegt, um physikalische Eigenschaften eines Objekts zu messen, nutzen tragbare KMGs entweder Gelenkarme oder, im Fall von optischen Koordinatenmessgeräten, messarmfreie Scansysteme, die optische Triangulationsmethoden verwenden und eine uneingeschränkte Bewegungsfreiheit um das Objekt herum ermöglichen. Tragbare KMGs mit Gelenkarmen haben sechs oder sieben Achsen, die anstelle von Linearachsen mit Drehgebern ausgestattet sind. Tragbare Messarme sind leicht (in der Regel weniger als 20 Pfund) und können fast überall hin transportiert und eingesetzt werden. Allerdings werden in der Industrie zunehmend optische Koordinatenmessgeräte verwendet. Sie sind mit kompakten linearen oder Matrix-Array-Kameras (wie der Microsoft Kinect) ausgestattet und sind kleiner als portable KMG mit Armen. Sie funktionieren kabellos und erlauben Anwendern schnell und einfach 3D-Messungen aller Arten von Objekten praktisch überall durchzuführen. Tragbare KMG eignen sich insbesondere für bestimmte, sich nicht wiederholende Anwendungen im Bereich Reverse Engineering, Rapid Prototyping und für die Inspektion großer Bauteile. Die Vorteile tragbarer KMG sind vielfältig. Nutzer können jede Art von Teilen selbst in den entferntesten und schwierigsten Umgebungen in 3D messen. Die optischen Messsysteme sind benutzerfreundlich und erfordern keine kontrollierte Umgebung für genaue Messungen. Hinzu kommt, dass tragbare Koordinatenmessgeräte weniger kosten als herkömmliche KMG.
Kompromisse müssen bei tragbaren KMG eingegangen werden: Es wird ein Anwender für die manuelle Handhabung benötigt. Darüber hinaus kann die Gesamtgenauigkeit etwas ungenauer sein als bei einer fest installierten Portalmessmaschine. Zudem ist das portable KMG für einige Anwendungen weniger geeignet.
Röntgen-Computertomographie
Neben taktilen und optischen Sensoren, welche abgesehen von der Schichtdickenmessung stets die Außengeometrie erfassen, kann das Verfahren der Röntgen-Computertomografie angewendet werden, um zusätzlich zur Außengeometrie auch die Innengeometrie eines Werkstücks zu messen. Beim Messen mit diesen Sensoren wirken zahlreiche Einflüsse (Ringartefakte, Taumelartefakte, Kegelstrahl-/Feldkamp-Artefakte, Strahlaufhärtung, Teil- oder Partialvolumenartefakte), welche die Genauigkeit des Messergebnisses beeinflussen. Durch den Einsatz zusätzlicher taktiler Sensoren, können systematische Messabweichungen der Tomografie teilweise korrigiert werden. Da während der Tomographie ein Bauteil immer vollständig durchstrahlt werden muss, ist der Einsatz für massive Bauteile oder für Bauteile mit stark unterschiedlichen Absorptionskoeffizienten (wegen nichtdurchstrahlte und überstrahlte Bereiche) eingeschränkt.
Richtlinien mit direktem Bezug zu Röntgen-Computertomographie für Koordinatenmessungen sind VDI/VDE 2617 Blatt 13 und VDI/VDE 2630 Blatt 1.1, 1.2, 1.4 und 2.1.
Während Koordinatenmesssysteme basierend auf der Röntgen-Computertomografie für den industriellen Einsatz kommerziell verfügbar sind, befinden sich industrielle Koordinatenmesssysteme basierend auf Ultraschall-Computertomografie (USCT) und Neutronen-Computertomografie (NCT) noch im Forschungsstadium.
Lasertracker
Siehe Tracking-Interferometer. Normen und Richtlinien mit direktem Bezug zu Lasertrackern für Koordinatenmessungen sind DIN EN ISO 10360-10:2012, VDI/VDE 2617 Blatt 10 und VDI/VDE 2617 Blatt 10.1.
Maschinenintegrierte Messtechnik
Werkzeugmessgeräte sind spezialisierte Messgeräte für die Prüfung, Einstellung, Ausrichtung und Justage von spanenden Werkzeugen. Es gibt verschiedene Varianten, deren Auslegung den Anforderungen der Spezialisierung entsprechen.
Für das Fertigungsverfahren Fräsen, also für rotierende Werkzeuge wie Spiralbohrer oder Messerköpfe, sind nur zwei Längsachsen (Werkzeughöhe und -breite) und eine Drehachse zur Prüfung der Werkzeuglänge, des Werkzeugdurchmessers und des Rundlaufs erforderlich.
Anstelle eines Messsensors für eine Kontaktmessung an einer Oberfläche tritt bei Werkzeugmessgeräten meist ein in zwei Achsen verfahrbarer Tageslichtprojektor, der auf einem großen Projektionsschirm mit Fadenkreuz den Schattenwurf oder das Profil des Werkzeuges abbildet. Bei der Messung wird die Projektionseinheit so verfahren, dass der Rand oder eine Ecke des Werkzeugs im Fadenkreuz liegt. Aus dem Verfahrweg ergibt sich die Werkzeuglänge oder der -durchmesser. Durch Ausrichtung auf dem Fadenkreuz und anschließende Drehung kann weiter der Rundlauf geprüft und so lange korrigiert werden, bis die Drehung keine Abweichung des Schattenrands auf dem Fadenkreuz zeigt.
Werkzeugmessgeräte für spanende Werkzeuge für das Fertigungsverfahren Drehen kommen formal mit zwei Achsen aus, besitzen aber meist drei, um auch die Höhe der Werkzeugschneide (für das sogenannte „Drehen über oder unter Mitte“) in Bezug der Werkzeugaufnahmeebene zur Drehachse an der Drehmaschine prüfen zu können.
Ursachen und Maßnahmen zur Reduzierung von Messabweichungen
Bei jeder Messung bestehen Abweichungen zwischen dem vom Messgerät angezeigten Messwert und dem tatsächlichen Wert der geometrischen Größe (Referenzwert). Diese Messabweichungen können unterschieden werden in zufällige und systematische Messabweichungen. Bei Koordinatenmesssystemen werden viele konstruktive und rechnerische Maßnahmen angewendet, um Messabweichungen gering zu halten. Während man systematische Messabweichungen rechnerisch korrigieren kann, machen zufällige Messabweichungen das Messergebnis unsicher. Genormte Verfahren zur Ermittlung der Mess- und Testunsicherheit von Koordinatenmesssystemen werden in DIN EN ISO 15530-3:2011, VDI/VDE 2617 Blatt 7, VDI/VDE 2617 Blatt 11 und in DIN ISO/TS 23165:2008 vorgestellt.
Wichtige Ursachen von Messabweichungen bei Koordinatenmessgeräten sind:
- Umgebungsbedingungen: Temperatur (Temperaturschwankungen, -gradienten, -strahlung), Schwingungen, Feuchte, Schmutz
- Werkstück , Messobjekt: Formabweichungen, Mikrogestalt (Rauheit), Werkstoff (E-Modul bei taktiler Antastung), Reflexionsgrad (bei optischer Antastung), Abmessungen / Gewicht, Temperatur, Nachgiebigkeit (z. B. filigrane Strukturen), Sauberkeit
- Messgerät: Konstruktiver Aufbau, Führungsabweichungen, Tastsystem, Antastkraft und -richtung, Mess- und Auswertesoftware
- Messstrategie: Antastmodus, Anzahl und Verteilung der Messpunkte, Messablauf, Auswertekriterien, Filter
- Bediener: Sorgfalt, Aufspannung, Tasterkonfiguration, Tasterkalibrierung, Überwachung des KMG
Konstruktive Maßnahmen gegen temperaturbedingte Messabweichungen
- Präzise gefertigte Führungskörper mit guten thermischen Eigenschaften.
- Pinole und Traverse des Portals aus Materialien mit hoher Wärmeleitfähigkeit (z. B. Aluminium). Die hohe Wärmeleitfähigkeit verkürzt die Anpassungszeit zur Wiederherstellung der Genauigkeit nach Temperaturschwankungen.
- Einhalten der international vereinbarten Bezugstemperatur von 20 °C durch klimatisierten Messraum, Temperieren der Messobjekte und Vermeidung einer Temperaturänderung am Messgerät (thermische Isolation des Geräteaufbaus; Vermeidung direkter Handwärme durch Thermohandschuhe, Vermeidung von Strahlung durch Beleuchtung und Sonne usw.)
- Maßstäbe aus Materialien mit minimalem thermischem Ausdehnungskoeffizient
- Temperaturüberwachung des Messraumes, des Messbereichs, des Messobjektes und von Messsystemelementen
Konstruktive Maßnahmen gegen Vibrationen
- Um den Schwingungseintrag aus der Umgebung auf die messtechnischen Einrichtungen zu reduzieren, kann als Fundament, auf dem alle messtechnisch relevanten Einrichtungen stehen, eine massive Betonplatte dienen, die ihrerseits durch ein Kiesbett und eine isolierende Dämpfungsschicht (spezielles Polymer) vom Boden getrennt ist. Eine umlaufende Trennfuge entkoppelt die Bodenplatte vom restlichen Gebäude. Durch diese Maßnahmen können die maximal zulässigen Schwingungsamplituden nach VDI/VDE 2627 eingehalten werden.
- Ein im Koordinatenmesssystem integriertes System zur passiven (oder aktiven) pneumatischen Schwingungsdämpfung minimiert das Übertragen von Bodenschwingungen und nivelliert den Gerätetisch bei unsymmetrischer Belastung durch das Werkstückgewicht.
Rechnerische Maßnahmen
- Rechnerische Korrektur statischer und dynamischer Einflüsse aller 21 Führungsabweichungen (regelmäßige Überwachung und ggf. Rekalibrierung zur Vermeidung von Drift)
- Vorhandene Plattendeformationen des Messtisches – verursacht durch Temperaturgradienten – werden durch Messen der Temperaturdifferenz zwischen Plattenober- und -unterseite kompensiert.
- Rechnerische Korrektur der Tasterbiegung bedingt durch Antastkräfte (bei taktilen Sensoren)
- Rechnerische Korrektur von Temperaturabweichungen des Werkstücks und einzelner Komponenten (z. B. der Maßstäbe) des Koordinatenmesssystems
Annahme- und Bestätigungsprüfungen
Zur Bestätigung der vom Hersteller festgelegten Leistungsfähigkeit eines Messsystems werden Annahmeprüfungen und nach wiederkehrenden Zeitabständen Bestätigungsprüfungen durchgeführt. Mit Hilfe kalibrierter Prüfkörper (Stufenendmaß, Kugelplatte, Lochplatte etc.) können dabei Längenmessabweichungen gemäß DIN EN ISO 10360-2:2010 und VDI/VDE 2617 Blatt 2.1 und Antastabweichungen gemäß DIN EN ISO 10360-5:2010 überprüft werden. VDI/VDE 2617 Blatt 5 und Blatt 5.1 gehen hierbei noch gezielt auf einzelne Prüfkörper ein.
Begrifflichkeiten
Der Begriff „Messmaschine“ (bzw. „Koordinatenmessmaschine“) ist stets zu vermeiden. Korrekt ist die Bezeichnung „Messgerät“ (bzw. „Koordinatenmessgerät“), da in der Technik ein „Gerät“ als ein signalumsetzendes bzw. informationsverarbeitendes System zur Steigerung der sensorischen oder geistigen Leistung eines Menschen definiert wird, während eine „Maschine“ ein energie- oder stoffumsetzendes System zur Steigerung der körperlichen Leistung eines Menschen beschreibt.
Da Geräte für Koordinatenmessungen mittlerweile komplexe Systeme sind, d. h. einen Verbund mehrerer Geräte darstellen, hat man sich international im Rahmen des ISO/TC 213 WG10 im Jahr 2013 darauf geeinigt, zukünftig nur noch den Begriff „Koordinatenmesssystem“ in Normen zu verwenden (Englisch: „Coordinate Measuring System“).
Normen und Richtlinien
- DIN EN ISO 10360-Reihe: Geometrische Produktspezifikation (GPS) – Annahmeprüfung und Bestätigungsprüfung für Koordinatenmessgeräte (KMG). Eine Übersicht ist auf der Homepage des ISO/TC 213 gegeben.
- VDI/VDE 2617-Reihe: Genauigkeit von Koordinatenmessgeräten – Kenngrößen und deren Prüfung. Eine Übersicht ist auf der Homepage des GMA FA „3.31 Koordinatenmessgeräte“ gegeben.
- VDMA 8721: Sicherheit von Koordinatenmessmaschinen
Literatur
- Albert Weckenmann (Hrsg.): Koordinatenmesstechnik: Flexible Strategien für funktions- und fertigungsgerechtes Prüfen. 2. Auflage. Hanser, 2012.
- Robert J. Hocken, Paulo H. Pereira (Hrsg.): Coordinate Measuring Machines and Systems (Manufacturing, Engineering and Materials Processing). CRC Press, 2011.
- Wolfgang Dutschke, Claus P. Keferstein: Fertigungsmesstechnik: Praxisorientierte Grundlagen, moderne Messverfahren. 5. Auflage. Vieweg+Teubner, 2005.
- Ralf Christoph, Hans J. Neumann: Multisensor-Koordinatenmesstechnik – Produktionsnahe optisch-taktile Maß-, Form- und Lagebestimmung. (= Die Bibliothek der Technik. Band 248). Verlag Moderne Industrie, 2006.
Weblinks
- Kostenloses E-Learning-System Ausbildung Koordinatenmesstechnik AUKOM Stufe 1
- Mehrkoordinaten Messtechnik - FH Köln - Campus Gummersbach
- Fach-Lexikon zu Koordinatenmessgeräten
Einzelnachweise
- DIN EN ISO 10360-1:2003: Geometrische Produktspezifikation (GPS) - Annahmeprüfung und Bestätigungsprüfung für Koordinatenmessgeräte (KMG) - Teil 1: Begriffe
- VDI/VDE 2617 Blatt 9: Genauigkeit von Koordinatenmessgeräten - Kenngrößen und deren Prüfung - Annahme- und Bestätigungsprüfung von Gelenkarm-Koordinatenmessgeräten, 2009.
- koordinatenmesstechnik.de
- Sensoren - Tasterwechseleinrichtung. ( vom 12. November 2013 im Internet Archive) aukom-ev.de
- Taktile Sensorik - Fraunhofer IFF. Abgerufen am 8. Dezember 2021.
- Albert Weckenmann (Hrsg.): Koordinatenmesstechnik: Flexible Strategien für funktions- und fertigungsgerechtes Prüfen. 2. Auflage. Hanser, 2012.
- DIN EN ISO 10360-4:2002: Geometrische Produktspezifikation (GPS) - Annahmeprüfung und Bestätigungsprüfung für Koordinatenmessgeräte (KMG) - Teil 4: KMG im Scanningmodus
- DIN EN ISO 10360-5:2010: Geometrische Produktspezifikation (GPS) - Annahmeprüfung und Bestätigungsprüfung für Koordinatenmessgeräte (KMG) - Prüfung der Antastabweichungen von KMG mit berührendem Messkopfsystem
- VDI/VDE 2617 Blatt 12.1: Genauigkeit von Koordinatenmessgeräten - Kenngrößen und deren Prüfung - Annahme- und Bestätigungsprüfungen für Koordinatenmessgeräte zum taktilen Messen von Mikrogeometrien
- DIN EN ISO 10360-7:2011: Geometrische Produktspezifikation (GPS) - Annahmeprüfung und Bestätigungsprüfung für Koordinatenmessgeräte (KMG) - KMG mit Bildverarbeitungssystemen
- DIN EN ISO 10360-8:2012: Geometrische Produktspezifikation (GPS) - Annahmeprüfung und Bestätigungsprüfung für Koordinatenmessgeräte (KMG) - KMG mit optischen Abstandssensoren
- VDI/VDE 2617 Blatt 6.1: Genauigkeit von Koordinatenmessgeräten - Kenngrößen und deren Prüfung - Leitfaden zur Anwendung von DIN EN ISO 10360 für Koordinatenmessgeräte mit optischen Sensoren für laterale Strukturen, 2007.
- VDI/VDE 2617 Blatt 6.2: Genauigkeit von Koordinatenmessgeräten - Kenngrößen und deren Prüfung - Leitfaden zur Anwendung von DIN EN ISO 10360 für Koordinatenmessgeräte mit optischen Abstandssensoren, 2005.
- DIN EN ISO 10360-9:2011: Geometrische Produktspezifikation (GPS) - Annahmeprüfung und Bestätigungsprüfung für Koordinatenmessgeräte (KMG) - KMG mit Multisensoren
- VDI/VDE 2617 Blatt 6.3: Genauigkeit von Koordinatenmessgeräten - Kenngrößen und deren Prüfung - Koordinatenmessgeräte mit Multisensorik, 2008.
- Philipp Krämer: Simulationsgestützte Abschätzung der Genauigkeit von Messungen mit Röntgen-Computertomographie. Dissertation Friedrich-Alexander-Universität Erlangen-Nürnberg, Shaker, 2012.
- koordinatenmesstechnik.de
- VDI/VDE 2617 Blatt 13: Genauigkeit von Koordinatenmessgeräten - Kenngrößen und deren Prüfung - Leitfaden zur Anwendung von DIN EN ISO 10360 für Koordinatenmessgeräte mit CT-Sensoren, 2011.
- VDI/VDE 2630 Blatt 1.1: Computertomografie in der dimensionellen Messtechnik - Grundlagen und Definitionen, 2009.
- VDI/VDE 2630 Blatt 1.2: Computertomografie in der dimensionellen Messtechnik - Einflussgrößen auf das Messergebnis und Empfehlungen für dimensionelle Computertomografie-Messungen, 2010.
- VDI/VDE 2630 Blatt 1.4: Computertomografie in der dimensionellen Messtechnik - Gegenüberstellung verschiedener dimensioneller Messverfahren, 2010.
- VDI/VDE 2630 Blatt 2.1: Computertomografie in der dimensionellen Messtechnik - Bestimmung der Messunsicherheit und der Prüfprozesseignung von Koordinatenmessgeräten mit CT-Sensoren, 2013.
- DIN EN ISO 10360-10:2012: Geometrische Produktspezifikation (GPS) - Annahmeprüfung und Bestätigungsprüfung für Koordinatenmessgeräte (KMG) - Teil 10: Lasertracker
- VDI/VDE 2617 Blatt 10: Genauigkeit von Koordinatenmessgeräten - Kenngrößen und deren Prüfung - Annahme- und Bestätigungsprüfung von Lasertrackern, 2011.
- VDI/VDE 2617 Blatt 10.1: Genauigkeit von Koordinatenmessgeräten - Kenngrößen und deren Prüfung - Lasertracker mit Multisensorik, 2012.
- DIN EN ISO 15530-3:2011: Geometrische Produktspezifikation und -prüfung (GPS) - Verfahren zur Ermittlung der Messunsicherheit von Koordinatenmessgeräten (KMG) - Teil 3: Anwendung von kalibrierten Werkstücken oder Normalen
- VDI/VDE 2617 Blatt 7: Ermittlung der Unsicherheit von Messungen auf Koordinatenmessgeräten durch Simulation, 2008.
- VDI/VDE 2617 Blatt 11: Ermittlung der Unsicherheit von Messungen auf Koordinatenmessgeräten durch Messunsicherheitsbilanzen, 2011.
- DIN ISO/TS 23165:2008: Geometrische Produktspezifikation (GPS) - Leitfaden zur Ermittlung der Testunsicherheit von Koordinatenmessgeräten
- DIN EN ISO 10360-2:2010: Geometrische Produktspezifikation (GPS) - Annahmeprüfung und Bestätigungsprüfung für Koordinatenmessgeräte (KMG) - Teil 2: KMG angewendet für Längenmessungen
- VDI/VDE 2617 Blatt 2.1: Genauigkeit von Koordinatenmessgeräten - Kenngrößen und deren Prüfung - Leitfaden zur Anwendung von DIN EN ISO 10360-2 zur Messung von Längenmaßen
- VDI/VDE 2617 Blatt 5: Genauigkeit von Koordinatenmessgeräten - Kenngrößen und deren Prüfung - Überwachung durch Prüfkörper, 2010.
- VDI/VDE 2617 Blatt 5.1: Genauigkeit von Koordinatenmessgeräten - Kenngrößen und deren Prüfung - Überwachung mit Kugelplatten, 2011.
- iso.org
- vdi.de
- VDMA 8721 - 2024-06 - DIN Media. Abgerufen am 13. März 2025.
Autor: www.NiNa.Az
Veröffentlichungsdatum:
wikipedia, wiki, deutsches, deutschland, buch, bücher, bibliothek artikel lesen, herunterladen kostenlos kostenloser herunterladen, MP3, Video, MP4, 3GP, JPG, JPEG, GIF, PNG, Bild, Musik, Lied, Film, Buch, Spiel, Spiele, Mobiltelefon, Mobil, Telefon, android, ios, apple, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, computer, komputer, Informationen zu Koordinatenmessgerät, Was ist Koordinatenmessgerät? Was bedeutet Koordinatenmessgerät?
Ein Koordinatenmessgerat beruht auf dem Prinzip der Koordinatenmesstechnik und beinhaltet ein zur Messung raumlicher Koordinaten geeignetes Messsystem Es besteht aus einem Messkopfsystem schaltender oder messender Sensor dessen Messbereich durch ein Verfahr bzw Positioniersystem mit inkrementeller Weg oder Winkelsensorik erweitert wird Daruber hinaus sind weitere Soft und Hardwarekomponenten zur Auswertung der erfassten Koordinatenwerte zur rechnerischen Korrektur systematischer Messabweichung und zur Steuerung der Verfahrachsen erforderlich Konventionelles Koordinatenmesssystem in Portalbauweise Ein rein mechanisch analoger Vorlaufer ist der Koordinatograf Grundprinzip und Anwendungsgebiete Hauptartikel KoordinatenmesstechnikGrundbauartenEin Koordinatenmesssystem verfugt uber ein CNC gesteuertes Positioniersystem oder ein handgefuhrtes Verfahrsystem mit dem das Messkopfsystem Sensor und das Messobjekt in ihrer raumlichen Lage relativ zueinander bewegt werden um die jeweiligen Messpunkte zu erfassen Jeder Verfahrachse des Positioniersystems ist mindestens ein Langenmesssystem zugeordnet das die jeweilige Position mit feiner Auflosung misst Einzelne Sensormesspunkte konnen aufgrund der bekannten Positionen der Positioniereinheit somit in ein gemeinsames Koordinatensystem transformiert und miteinander verknupft werden Ublicherweise dienen als Langenmesssysteme zur relativen Positionsbestimmung der Achsen inkrementale Langenmesssysteme mit elektronischer Messwerterfassung und mit Massverkorperungen auf materieller z B Glasmassstab oder optischer z B Laserinterferometer Basis Der Messbereich und das Geratekoordinatensystem werden durch die Verfahrachsen und deren Fuhrungen Antriebe und inkrementale Messsysteme festgelegt Koordinatenmesssysteme konventioneller Bauart besitzen ein kartesisches Geratekoordinatensystem Koordinatenmesssysteme deren Fuhrungen ein Zylinder oder Kugelkoordinatensystem aufspannen sind aber ebenfalls verbreitet und arbeiten mit einer Kombination aus inkrementaler Weg und Winkelsensorik Konventionelle Bauweise kartesisches Geratekoordinatensystem Die am haufigsten eingesetzten klassischen Gerate sind kartesisch rechtwinklige Koordinatenmesssysteme Die orthogonalen Fuhrungen spannen ein kartesisches Koordinatensystem auf Wesentliche Bau und Funktionsgruppen eines kartesischen Koordinatenmessgerates sind Offene Lagerung eines Koordinatenmesssystems a Inkrementeller Massstab b Luftlager c Fuhrungsbahn aus GranitMesstisch meist Hartgestein Massverkorperungen fur die einzelnen Achsen z B fotoelektrisches inkrementales Langenmesssystem mit Zerodur Massstaben geringer thermischer Ausdehnungskoeffizient Lagerung der einzelnen Achsen z B aerostatische Lager Luftlager zur Realisierung einer geringen Reibung zwischen den einzelnen beweglichen Komponenten Fuhrungsbahnen aus Hartgestein Granit Antrieb z B wird bei CNC gesteuerten KMGs die Bewegung der Achsen durch elektrische Antriebe inkl Getriebe und schwingungsdampfende Elemente in einem geschlossenen Regelkreis realisiert Aufgabe des Antriebssystems ist nur die Bewegung der Achsen nicht das Bereitstellen der Information uber die Position der Achsen Diese Aufgabe wird vom Langenmesssystem ubernommen welches die aktuelle Position an den Steuer zur Positionierung und Auswerterechner zur Berechnung der angetasteten Koordinatenwerte ubermittelt Mess und Tastsysteme siehe Abschnitt Sensoren Steuer und Auswerterechner Zur Steuerung des Messablaufs und der Verfahrbewegungen zur Regelung der Position oder Trajektorie z B Variation der Verfahrgeschwindigkeit zur Manipulation der gemessenen Werte hinsichtlich einer rechnerischen Korrektur systematischer Messabweichungen mit Hilfe zuvor bestimmter Kalibrierwerte und hinsichtlich der Transformation der Koordinatenwerte sowie der Auswertung der Messpunkte gemass dem zugeordneten Geometrieelement Prinzipieller Aufbau eines konventionellen kartesischen Portalkoordinatenmessgerates 1 Antrieb fur X Achse 2 Ablesesystem fur X Achse 3 Massverkorperung fur X Achse 4 Taster 5 3D Tastkopf 6 Lagerung fur Y Achse 7 Anzeige 8 Steuer und Anpasselektronik 9 Steuerpult 10 Werkstuckaufnahme 11 Geratebasis Gemass DIN EN ISO 10360 1 2003 unterscheidet man folgende Grundbauarten zur Realisierung von drei zueinander rechtwinklig beweglichen Fuhrungen Auslegerbauweise Ein Auslegerarm an dem das Messkopfsystem befestigt ist ist in vertikaler Richtung beweglich Zwei weitere Achsen sind jeweils senkrecht zueinander in horizontaler Richtung beweglich Die horizontale Bewegung kann entweder durch einen beweglichen Tisch oder bei einem feststehenden Tisch durch bewegliche Aufbauelemente des Auslegers realisiert werden Meist wird diese Bauweise fur Messgerate mit kleinem Messbereich aber sehr guter Messgenauigkeit eingesetzt Bruckenbauweise Die beweglichen Achsen und der Aufspannbereich sind voneinander getrennt Die in horizontaler Richtung bewegliche Brucke tragt die Pinole mit dem Messkopfsystem welche in horizontaler Richtung entlang der Brucke und in vertikaler Richtung bewegt werden kann Koordinatenmessgerate in Bruckenbauweise ermoglichen einen grossen Messbereich und damit das Erfassen sehr grosser Werkstucke bis hin zu ganzen Fahrzeugen oder Komponenten aus dem Flugzeugbau Portalbauweise An dem Portalquerbalken ist die das Messkopfsystem tragende Pinole vertikale Bewegung angeordnet welche in horizontaler Richtung entlang des Portalquerbalkens beweglich ist Das Portal ist mit zwei Fussen an den Randern des Geratetisches gelagert und in horizontaler Richtung entlang des Geratetisches beweglich Ebenfalls sind Bauweisen mit feststehendem Portal und beweglichen Geratetisch verbreitet Koordinatenmesssysteme in Portalbauweise bieten geringe Messabweichungen bei gleichzeitig guter Zuganglichkeit und ausreichend grossem Messbereich Sie stellen daher die haufigste Bauweise dar Ublich ist ein Messbereich von etwa 1 m Standerbauweise Bei einem Koordinatenmesssystem in Standerbauweise mit Horizontalarm ist die Pinole mit dem Messkopfsystem in horizontaler Richtung beweglich welche entlang eines Standers auch Saule genannt in vertikaler Richtung bewegt werden kann Die zweite horizontale Bewegung kann durch Verfahren des Standers entlang des Messtisches oder durch einen beweglichen Tisch realisiert werden Diese Bauweise wird haufig zur Messung von Karosserien und grossen Blechbauteilen genutzt da drei Seiten des Messbereichs frei zuganglich sind Grundbauarten von Koordinatenmesssystemen gemass DIN EN ISO 10360 1 2003 Auslegerbauweise Bruckenbauweise Portalbauweise Standerbauweise mit beweglichem HorizontalarmUnkonventionelle Bauart Zylinder oder Kugelkoordinatensystem Koordinatenmesssysteme unkonventioneller Bauart messen in Zylinder oder Kugelkoordinaten Hierzu zahlen Lasertracker Gelenkarmmessgerate und Rontgen Computertomographie Unkonventionelle Bauart Mikro und Nanokoordinatenmesssysteme Zur Reduktion der Messabweichungen verursacht durch zufallige und systematische rotatorische Fuhrungsabweichungen werden bei Mikro und Nanokoordinatenmessgeraten unkonventionelle Anordnungen der Langenmess und Antriebssysteme eingesetzt Durch Realisierung des abbeschen Komparatorprinzips in mehreren Messachsen den Einsatz von laserinterferometrischen Langenmesssystemen und einer Parallelmetrologie welche alle Positionswerte direkt an dem in allen drei Achsen beweglichen Sensor oder der in allen drei Achsen beweglichen Plattform mit dem Messobjekt misst lassen sich die Messabweichungen und Messunsicherheiten signifikant reduzieren Erweiterungen Durch den Einsatz eines zusatzlichen Drehtisches oder einer Dreh Schwenk Einrichtung konnen auch ungunstig gelegene Messelemente angetastet werden Mit derartigen Erweiterungen kann das Werkstuck in ein oder mehreren Achsen rotiert werden Die veranderte Position des Werkstucks wird bei der Berechnung und Transformation der gemessenen Koordinatenwerte in das Werkstuckkoordinatensystem berucksichtigt Alternativ oder zusatzlich werden auch Dreh Schwenk Einrichtungen fur die Sensoren eingesetzt SensorenSensoren fur Koordinatenmessgerate Gliederung nach der Funktionsweise aus Grunden der Anschaulichkeit sind die im Grunde den Triangulationsverfahren zuzuordnenden Kontrastverfahren separat aufgefuhrt elektrisch antastende Sensoren fehlen Koordinatenmesssysteme konnen mit schaltenden und messenden Sensoren ausgestattet sein Schaltende Sensoren liefern beim Aufnehmen eines Messpunktes lediglich ein Triggersignal welches das Auslesen der Langenmesssysteme initiiert Messende Sensoren haben hingegen intern einen eigenen Messbereich von wenigen Millimetern Der intern gemessene Sensorwert wird dabei mit der von den Langenmesssystemen bestimmten Position des Sensors uberlagert Sensoren fur Koordinatenmesssysteme kann man ebenfalls hinsichtlich ihres physikalischen Prinzips unterteilen Bis in die 90er Jahre waren taktile Sensoren die meist genutzten Antastsensoren bei Koordinatenmessgeraten Mit verbesserter Sensortechnik leistungsfahigerer Rechentechnik und gestiegenen Anforderungen werden heutzutage vermehrt auch optische opto taktile und Rontgen Sensoren eingesetzt Eine Ubersicht uber Sensoren in Koordinatenmesssystemen ist ebenfalls in gegeben Um die Universalitat von Koordinatenmesssystemen zu steigern konnen auch mehrere unterschiedliche Sensorprinzipien in einem Koordinatenmesssystem vereint werden Diese Koordinatenmesssysteme werden Multisensorkoordinatenmesssysteme genannt Da es mit einem einzigen Sensor bzw Taster nicht moglich ist alle Messaufgaben zu losen ist es bei den meisten Koordinatenmesssystemen moglich diese auszutauschen Mit Tasterwechseleinrichtungen kann der Wechsel in den automatischen Messablauf eingebunden werden Mechanische taktile Antastung Messtaster mit Rubinkugel als Messspitze Messkopfsysteme mit taktilen Sensoren werden in schaltende Systeme z B basierend auf dem elektro mechanischen Prinzip und messende Systeme z B mit induktiv oder kapazitiv messenden Sensoren unterteilt Die Antastung auf der Werkstuckoberflache wird durch Messtaster durchgefuhrt Je nach Messaufgabe konnen hierfur unterschiedliche geometrische Formen des Tastelementes meist Kugeln und Materialien oft Industrierubin Hartmetall Siliziumnitrid eingesetzt werden Die taktilen Sensorsysteme sind dem menschlichen Tastsinn nachempfunden sodass nicht nur einzelne Beruhrungen sondern auch grossflachige Druckverteilungen erkannt werden konnen Da bei der Antastung eine Messkraft in der Grossenordnung von 0 01 N bis 0 2 N wirkt biegt sich der Taststift was bei der Messung berucksichtigt werden muss Die Biegung des Taststiftes wird beim Einmessen der Taster Taststiftkalibrierung Tasterqualifikation berucksichtigt und bei den folgenden Messungen automatisch korrigiert Zusatzlich wird beim Einmessen des Tasters der Durchmesser bestimmt und bei mehreren Tastelementen der Bezug zueinander hergestellt z B bei Sterntaster die Abstande der Mittelpunkte der Tastkugeln zueinander Das Einmessen des Tasters erfolgt an einem sehr genauen Kugelnormal Formabweichung lt 0 2 µm das mit jedem verwendeten Taster an mindestens funf oder mehr Punkten entsprechend einer vom Geratehersteller definierten Einmessstrategie angetastet wird Das punktweise Erfassen der Werkstuckoberflache ist ihrem Wesen nach vergleichbar mit dem Ziehen einer Stichprobe aus der unendlich grossen Gesamtheit aller Oberflachenpunkte Die Bereiche zwischen den aufgenommenen Messpunkten werden nicht erfasst und infolgedessen bei der Auswertung nicht berucksichtigt Je mehr Messpunkte aufgenommen werden desto mehr Informationen uber die Oberflache des Werkstuckes werden erfasst und in die Auswertung einbezogen der Umfang der Stichprobe wird grosser Das Antasten einzelner Punkte erfordert bei grossen Messpunktzahlen erhebliche meist nicht akzeptable Messzeiten Beim Scannen wird die Tastkugel mit Hilfe besonderer Steuerfunktionen beruhrend entlang der Oberflache des Werkstucks bewegt Wahrend der Bewegung werden laufend Messwerte ubernommen Neuere Gerate lassen hohe Scanning Geschwindigkeiten zu mit denen wie bei der Formmesstechnik sehr grosse Messpunktzahlen in geringer Messzeit erreicht werden konnen Dies kann zu einer erhohten Aussagesicherheit fuhren obwohl die Einzelpunkt Unsicherheit beim Scannen deutlich grosser ist als beim Antasten einzelner Punkte Das Scannen gewinnt daher gegenuber dem Einzelpunkt Betrieb immer mehr an Bedeutung Normen und Richtlinien welche direkt auf die taktile Antastung bei Koordinatenmessungen eingehen sind DIN EN ISO 10360 4 2002 DIN EN ISO 10360 5 2010 und VDI VDE 2617 Blatt 12 1 Beruhrungslose Antastung Zur beruhrungslosen Antastung konnen optische elektrische und rontgentomographische Sensoren eingesetzt werden Prinzipiell kann jeder elektrische oder optische Sensor in Koordinatenmesssystemen eingesetzt werden um dessen Messbereich mit Hilfe des Positioniersystems zu erweitern Optische Abstandssensoren Triangulationssensoren z B Lasertriangulation Liniensensor Photogrammetrie Streifenprojektion Bilderverarbeitungssensoren z B Kantenfinder Binar Verarbeitung Grauwert Verarbeitung Fokusvariation Kontrastverfahren z B Autofokus Konfokalsensoren z B chromatischer Konfokalsensor Foucault Sensor bzw Laserfokusverfahren Interferometer z B Laserinterferometer Weisslichtinterferometer Elektrische Abstandssensoren Tunnelstromsensoren z B schaltend oder Tunnelstrommessung Rontgentomographische Sensoren Bestehend aus einer Rontgenrohre und einem Detektor die durch ein Messobjekt welches sich zwischen Rontgenrohre und Detektor befindet und durchstrahlt wird abgeschwachte Rontgenstrahlung wird gemessen Normen und Richtlinien welche auf die beruhrungslose Antastung bei Koordinatenmessungen eingehen sind DIN EN ISO 10360 7 2011 DIN EN ISO 10360 8 2012 VDI VDE 2617 Blatt 6 1 und VDI VDE 2617 Blatt 6 2 Weiterentwickelte GeratetechnikMultisensorkoordinatenmessgerate Messen mit mehreren Sensoren Multisensorkoordinatenmessgerat mit a Bildverarbeitungssensor b taktil optischem Taster und c taktilem Taster Eine besonders hohe Universalitat wird durch die Kombination mehrerer unterschiedlicher Sensoren in einem Koordinatenmessgerat erreicht Fur jedes zu messende Merkmal kann der optimale Sensor ausgewahlt werden Die Messergebnisse der unterschiedlichen Sensoren liegen in einem gemeinsamen Koordinatensystem vor Hierfur wird die Position der Sensoren vorab zueinander eingemessen Dies ermoglicht es die Ergebnisse verschiedener Sensoren zu kombinieren um Merkmale zu messen die mit einem Sensor allein nicht oder nur schlecht messbar sind Die verschiedenen Sensoren werden entweder an einer Wechselschnittstelle an der Pinole des Koordinatenmessgerates befestigt und im Messablauf nacheinander automatisch eingewechselt Sensorwechsler oder sind dauerhaft an der vertikal positionierbaren Pinole nebeneinander angeordnet Durch Gerate mit mehreren Pinolen die eine getrennte vertikale Positionierung der einzelnen Sensoren zulassen ist das Kollisionsrisiko verringert Ebenso werden Sensoren auch mittels Ruckzugsachsen an der Pinole befestigt und nur bei Bedarf ausgefahren wodurch sich Kollisionen vermeiden lassen Normen und Richtlinien mit direktem Bezug zu Koordinatenmesssystemen mit Multisensorik sind DIN EN ISO 10360 9 2011 und VDI VDE 2617 Blatt 6 3 Portable Koordinatenmessgerate Wahrend herkommliche Koordinatenmessgerate KMG eine Sonde verwenden die sich auf drei kartesischen Achsen bewegt um physikalische Eigenschaften eines Objekts zu messen nutzen tragbare KMGs entweder Gelenkarme oder im Fall von optischen Koordinatenmessgeraten messarmfreie Scansysteme die optische Triangulationsmethoden verwenden und eine uneingeschrankte Bewegungsfreiheit um das Objekt herum ermoglichen Tragbare KMGs mit Gelenkarmen haben sechs oder sieben Achsen die anstelle von Linearachsen mit Drehgebern ausgestattet sind Tragbare Messarme sind leicht in der Regel weniger als 20 Pfund und konnen fast uberall hin transportiert und eingesetzt werden Allerdings werden in der Industrie zunehmend optische Koordinatenmessgerate verwendet Sie sind mit kompakten linearen oder Matrix Array Kameras wie der Microsoft Kinect ausgestattet und sind kleiner als portable KMG mit Armen Sie funktionieren kabellos und erlauben Anwendern schnell und einfach 3D Messungen aller Arten von Objekten praktisch uberall durchzufuhren Tragbare KMG eignen sich insbesondere fur bestimmte sich nicht wiederholende Anwendungen im Bereich Reverse Engineering Rapid Prototyping und fur die Inspektion grosser Bauteile Die Vorteile tragbarer KMG sind vielfaltig Nutzer konnen jede Art von Teilen selbst in den entferntesten und schwierigsten Umgebungen in 3D messen Die optischen Messsysteme sind benutzerfreundlich und erfordern keine kontrollierte Umgebung fur genaue Messungen Hinzu kommt dass tragbare Koordinatenmessgerate weniger kosten als herkommliche KMG Kompromisse mussen bei tragbaren KMG eingegangen werden Es wird ein Anwender fur die manuelle Handhabung benotigt Daruber hinaus kann die Gesamtgenauigkeit etwas ungenauer sein als bei einer fest installierten Portalmessmaschine Zudem ist das portable KMG fur einige Anwendungen weniger geeignet Rontgen Computertomographie Neben taktilen und optischen Sensoren welche abgesehen von der Schichtdickenmessung stets die Aussengeometrie erfassen kann das Verfahren der Rontgen Computertomografie angewendet werden um zusatzlich zur Aussengeometrie auch die Innengeometrie eines Werkstucks zu messen Beim Messen mit diesen Sensoren wirken zahlreiche Einflusse Ringartefakte Taumelartefakte Kegelstrahl Feldkamp Artefakte Strahlaufhartung Teil oder Partialvolumenartefakte welche die Genauigkeit des Messergebnisses beeinflussen Durch den Einsatz zusatzlicher taktiler Sensoren konnen systematische Messabweichungen der Tomografie teilweise korrigiert werden Da wahrend der Tomographie ein Bauteil immer vollstandig durchstrahlt werden muss ist der Einsatz fur massive Bauteile oder fur Bauteile mit stark unterschiedlichen Absorptionskoeffizienten wegen nichtdurchstrahlte und uberstrahlte Bereiche eingeschrankt Richtlinien mit direktem Bezug zu Rontgen Computertomographie fur Koordinatenmessungen sind VDI VDE 2617 Blatt 13 und VDI VDE 2630 Blatt 1 1 1 2 1 4 und 2 1 Wahrend Koordinatenmesssysteme basierend auf der Rontgen Computertomografie fur den industriellen Einsatz kommerziell verfugbar sind befinden sich industrielle Koordinatenmesssysteme basierend auf Ultraschall Computertomografie USCT und Neutronen Computertomografie NCT noch im Forschungsstadium Lasertracker Siehe Tracking Interferometer Normen und Richtlinien mit direktem Bezug zu Lasertrackern fur Koordinatenmessungen sind DIN EN ISO 10360 10 2012 VDI VDE 2617 Blatt 10 und VDI VDE 2617 Blatt 10 1 Maschinenintegrierte Messtechnik Werkzeugmessgerate sind spezialisierte Messgerate fur die Prufung Einstellung Ausrichtung und Justage von spanenden Werkzeugen Es gibt verschiedene Varianten deren Auslegung den Anforderungen der Spezialisierung entsprechen Fur das Fertigungsverfahren Frasen also fur rotierende Werkzeuge wie Spiralbohrer oder Messerkopfe sind nur zwei Langsachsen Werkzeughohe und breite und eine Drehachse zur Prufung der Werkzeuglange des Werkzeugdurchmessers und des Rundlaufs erforderlich Anstelle eines Messsensors fur eine Kontaktmessung an einer Oberflache tritt bei Werkzeugmessgeraten meist ein in zwei Achsen verfahrbarer Tageslichtprojektor der auf einem grossen Projektionsschirm mit Fadenkreuz den Schattenwurf oder das Profil des Werkzeuges abbildet Bei der Messung wird die Projektionseinheit so verfahren dass der Rand oder eine Ecke des Werkzeugs im Fadenkreuz liegt Aus dem Verfahrweg ergibt sich die Werkzeuglange oder der durchmesser Durch Ausrichtung auf dem Fadenkreuz und anschliessende Drehung kann weiter der Rundlauf gepruft und so lange korrigiert werden bis die Drehung keine Abweichung des Schattenrands auf dem Fadenkreuz zeigt Werkzeugmessgerate fur spanende Werkzeuge fur das Fertigungsverfahren Drehen kommen formal mit zwei Achsen aus besitzen aber meist drei um auch die Hohe der Werkzeugschneide fur das sogenannte Drehen uber oder unter Mitte in Bezug der Werkzeugaufnahmeebene zur Drehachse an der Drehmaschine prufen zu konnen Ursachen und Massnahmen zur Reduzierung von MessabweichungenBei jeder Messung bestehen Abweichungen zwischen dem vom Messgerat angezeigten Messwert und dem tatsachlichen Wert der geometrischen Grosse Referenzwert Diese Messabweichungen konnen unterschieden werden in zufallige und systematische Messabweichungen Bei Koordinatenmesssystemen werden viele konstruktive und rechnerische Massnahmen angewendet um Messabweichungen gering zu halten Wahrend man systematische Messabweichungen rechnerisch korrigieren kann machen zufallige Messabweichungen das Messergebnis unsicher Genormte Verfahren zur Ermittlung der Mess und Testunsicherheit von Koordinatenmesssystemen werden in DIN EN ISO 15530 3 2011 VDI VDE 2617 Blatt 7 VDI VDE 2617 Blatt 11 und in DIN ISO TS 23165 2008 vorgestellt Einflusse die zu Messabweichungen bei Koordinatenmessungen fuhren konnen Zahlen Gewichtung der Einflusse Wichtige Ursachen von Messabweichungen bei Koordinatenmessgeraten sind Umgebungsbedingungen Temperatur Temperaturschwankungen gradienten strahlung Schwingungen Feuchte Schmutz Werkstuck Messobjekt Formabweichungen Mikrogestalt Rauheit Werkstoff E Modul bei taktiler Antastung Reflexionsgrad bei optischer Antastung Abmessungen Gewicht Temperatur Nachgiebigkeit z B filigrane Strukturen Sauberkeit Messgerat Konstruktiver Aufbau Fuhrungsabweichungen Tastsystem Antastkraft und richtung Mess und Auswertesoftware Messstrategie Antastmodus Anzahl und Verteilung der Messpunkte Messablauf Auswertekriterien Filter Bediener Sorgfalt Aufspannung Tasterkonfiguration Tasterkalibrierung Uberwachung des KMGKonstruktive Massnahmen gegen temperaturbedingte Messabweichungen Prazise gefertigte Fuhrungskorper mit guten thermischen Eigenschaften Pinole und Traverse des Portals aus Materialien mit hoher Warmeleitfahigkeit z B Aluminium Die hohe Warmeleitfahigkeit verkurzt die Anpassungszeit zur Wiederherstellung der Genauigkeit nach Temperaturschwankungen Einhalten der international vereinbarten Bezugstemperatur von 20 C durch klimatisierten Messraum Temperieren der Messobjekte und Vermeidung einer Temperaturanderung am Messgerat thermische Isolation des Gerateaufbaus Vermeidung direkter Handwarme durch Thermohandschuhe Vermeidung von Strahlung durch Beleuchtung und Sonne usw Massstabe aus Materialien mit minimalem thermischem Ausdehnungskoeffizient Temperaturuberwachung des Messraumes des Messbereichs des Messobjektes und von MesssystemelementenKonstruktive Massnahmen gegen Vibrationen Um den Schwingungseintrag aus der Umgebung auf die messtechnischen Einrichtungen zu reduzieren kann als Fundament auf dem alle messtechnisch relevanten Einrichtungen stehen eine massive Betonplatte dienen die ihrerseits durch ein Kiesbett und eine isolierende Dampfungsschicht spezielles Polymer vom Boden getrennt ist Eine umlaufende Trennfuge entkoppelt die Bodenplatte vom restlichen Gebaude Durch diese Massnahmen konnen die maximal zulassigen Schwingungsamplituden nach VDI VDE 2627 eingehalten werden Ein im Koordinatenmesssystem integriertes System zur passiven oder aktiven pneumatischen Schwingungsdampfung minimiert das Ubertragen von Bodenschwingungen und nivelliert den Geratetisch bei unsymmetrischer Belastung durch das Werkstuckgewicht Rechnerische Massnahmen Rechnerische Korrektur statischer und dynamischer Einflusse aller 21 Fuhrungsabweichungen regelmassige Uberwachung und ggf Rekalibrierung zur Vermeidung von Drift Vorhandene Plattendeformationen des Messtisches verursacht durch Temperaturgradienten werden durch Messen der Temperaturdifferenz zwischen Plattenober und unterseite kompensiert Rechnerische Korrektur der Tasterbiegung bedingt durch Antastkrafte bei taktilen Sensoren Rechnerische Korrektur von Temperaturabweichungen des Werkstucks und einzelner Komponenten z B der Massstabe des KoordinatenmesssystemsAnnahme und Bestatigungsprufungen Zur Bestatigung der vom Hersteller festgelegten Leistungsfahigkeit eines Messsystems werden Annahmeprufungen und nach wiederkehrenden Zeitabstanden Bestatigungsprufungen durchgefuhrt Mit Hilfe kalibrierter Prufkorper Stufenendmass Kugelplatte Lochplatte etc konnen dabei Langenmessabweichungen gemass DIN EN ISO 10360 2 2010 und VDI VDE 2617 Blatt 2 1 und Antastabweichungen gemass DIN EN ISO 10360 5 2010 uberpruft werden VDI VDE 2617 Blatt 5 und Blatt 5 1 gehen hierbei noch gezielt auf einzelne Prufkorper ein BegrifflichkeitenDer Begriff Messmaschine bzw Koordinatenmessmaschine ist stets zu vermeiden Korrekt ist die Bezeichnung Messgerat bzw Koordinatenmessgerat da in der Technik ein Gerat als ein signalumsetzendes bzw informationsverarbeitendes System zur Steigerung der sensorischen oder geistigen Leistung eines Menschen definiert wird wahrend eine Maschine ein energie oder stoffumsetzendes System zur Steigerung der korperlichen Leistung eines Menschen beschreibt Da Gerate fur Koordinatenmessungen mittlerweile komplexe Systeme sind d h einen Verbund mehrerer Gerate darstellen hat man sich international im Rahmen des ISO TC 213 WG10 im Jahr 2013 darauf geeinigt zukunftig nur noch den Begriff Koordinatenmesssystem in Normen zu verwenden Englisch Coordinate Measuring System Normen und RichtlinienDIN EN ISO 10360 Reihe Geometrische Produktspezifikation GPS Annahmeprufung und Bestatigungsprufung fur Koordinatenmessgerate KMG Eine Ubersicht ist auf der Homepage des ISO TC 213 gegeben VDI VDE 2617 Reihe Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Prufung Eine Ubersicht ist auf der Homepage des GMA FA 3 31 Koordinatenmessgerate gegeben VDMA 8721 Sicherheit von KoordinatenmessmaschinenLiteraturAlbert Weckenmann Hrsg Koordinatenmesstechnik Flexible Strategien fur funktions und fertigungsgerechtes Prufen 2 Auflage Hanser 2012 Robert J Hocken Paulo H Pereira Hrsg Coordinate Measuring Machines and Systems Manufacturing Engineering and Materials Processing CRC Press 2011 Wolfgang Dutschke Claus P Keferstein Fertigungsmesstechnik Praxisorientierte Grundlagen moderne Messverfahren 5 Auflage Vieweg Teubner 2005 Ralf Christoph Hans J Neumann Multisensor Koordinatenmesstechnik Produktionsnahe optisch taktile Mass Form und Lagebestimmung Die Bibliothek der Technik Band 248 Verlag Moderne Industrie 2006 WeblinksKostenloses E Learning System Ausbildung Koordinatenmesstechnik AUKOM Stufe 1 Mehrkoordinaten Messtechnik FH Koln Campus Gummersbach Fach Lexikon zu KoordinatenmessgeratenEinzelnachweiseDIN EN ISO 10360 1 2003 Geometrische Produktspezifikation GPS Annahmeprufung und Bestatigungsprufung fur Koordinatenmessgerate KMG Teil 1 Begriffe VDI VDE 2617 Blatt 9 Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Prufung Annahme und Bestatigungsprufung von Gelenkarm Koordinatenmessgeraten 2009 koordinatenmesstechnik de Sensoren Tasterwechseleinrichtung Memento vom 12 November 2013 im Internet Archive aukom ev de Taktile Sensorik Fraunhofer IFF Abgerufen am 8 Dezember 2021 Albert Weckenmann Hrsg Koordinatenmesstechnik Flexible Strategien fur funktions und fertigungsgerechtes Prufen 2 Auflage Hanser 2012 DIN EN ISO 10360 4 2002 Geometrische Produktspezifikation GPS Annahmeprufung und Bestatigungsprufung fur Koordinatenmessgerate KMG Teil 4 KMG im Scanningmodus DIN EN ISO 10360 5 2010 Geometrische Produktspezifikation GPS Annahmeprufung und Bestatigungsprufung fur Koordinatenmessgerate KMG Prufung der Antastabweichungen von KMG mit beruhrendem Messkopfsystem VDI VDE 2617 Blatt 12 1 Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Prufung Annahme und Bestatigungsprufungen fur Koordinatenmessgerate zum taktilen Messen von Mikrogeometrien DIN EN ISO 10360 7 2011 Geometrische Produktspezifikation GPS Annahmeprufung und Bestatigungsprufung fur Koordinatenmessgerate KMG KMG mit Bildverarbeitungssystemen DIN EN ISO 10360 8 2012 Geometrische Produktspezifikation GPS Annahmeprufung und Bestatigungsprufung fur Koordinatenmessgerate KMG KMG mit optischen Abstandssensoren VDI VDE 2617 Blatt 6 1 Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Prufung Leitfaden zur Anwendung von DIN EN ISO 10360 fur Koordinatenmessgerate mit optischen Sensoren fur laterale Strukturen 2007 VDI VDE 2617 Blatt 6 2 Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Prufung Leitfaden zur Anwendung von DIN EN ISO 10360 fur Koordinatenmessgerate mit optischen Abstandssensoren 2005 DIN EN ISO 10360 9 2011 Geometrische Produktspezifikation GPS Annahmeprufung und Bestatigungsprufung fur Koordinatenmessgerate KMG KMG mit Multisensoren VDI VDE 2617 Blatt 6 3 Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Prufung Koordinatenmessgerate mit Multisensorik 2008 Philipp Kramer Simulationsgestutzte Abschatzung der Genauigkeit von Messungen mit Rontgen Computertomographie Dissertation Friedrich Alexander Universitat Erlangen Nurnberg Shaker 2012 koordinatenmesstechnik de VDI VDE 2617 Blatt 13 Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Prufung Leitfaden zur Anwendung von DIN EN ISO 10360 fur Koordinatenmessgerate mit CT Sensoren 2011 VDI VDE 2630 Blatt 1 1 Computertomografie in der dimensionellen Messtechnik Grundlagen und Definitionen 2009 VDI VDE 2630 Blatt 1 2 Computertomografie in der dimensionellen Messtechnik Einflussgrossen auf das Messergebnis und Empfehlungen fur dimensionelle Computertomografie Messungen 2010 VDI VDE 2630 Blatt 1 4 Computertomografie in der dimensionellen Messtechnik Gegenuberstellung verschiedener dimensioneller Messverfahren 2010 VDI VDE 2630 Blatt 2 1 Computertomografie in der dimensionellen Messtechnik Bestimmung der Messunsicherheit und der Prufprozesseignung von Koordinatenmessgeraten mit CT Sensoren 2013 DIN EN ISO 10360 10 2012 Geometrische Produktspezifikation GPS Annahmeprufung und Bestatigungsprufung fur Koordinatenmessgerate KMG Teil 10 Lasertracker VDI VDE 2617 Blatt 10 Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Prufung Annahme und Bestatigungsprufung von Lasertrackern 2011 VDI VDE 2617 Blatt 10 1 Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Prufung Lasertracker mit Multisensorik 2012 DIN EN ISO 15530 3 2011 Geometrische Produktspezifikation und prufung GPS Verfahren zur Ermittlung der Messunsicherheit von Koordinatenmessgeraten KMG Teil 3 Anwendung von kalibrierten Werkstucken oder Normalen VDI VDE 2617 Blatt 7 Ermittlung der Unsicherheit von Messungen auf Koordinatenmessgeraten durch Simulation 2008 VDI VDE 2617 Blatt 11 Ermittlung der Unsicherheit von Messungen auf Koordinatenmessgeraten durch Messunsicherheitsbilanzen 2011 DIN ISO TS 23165 2008 Geometrische Produktspezifikation GPS Leitfaden zur Ermittlung der Testunsicherheit von Koordinatenmessgeraten DIN EN ISO 10360 2 2010 Geometrische Produktspezifikation GPS Annahmeprufung und Bestatigungsprufung fur Koordinatenmessgerate KMG Teil 2 KMG angewendet fur Langenmessungen VDI VDE 2617 Blatt 2 1 Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Prufung Leitfaden zur Anwendung von DIN EN ISO 10360 2 zur Messung von Langenmassen VDI VDE 2617 Blatt 5 Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Prufung Uberwachung durch Prufkorper 2010 VDI VDE 2617 Blatt 5 1 Genauigkeit von Koordinatenmessgeraten Kenngrossen und deren Prufung Uberwachung mit Kugelplatten 2011 iso org vdi de VDMA 8721 2024 06 DIN Media Abgerufen am 13 Marz 2025 Normdaten Sachbegriff GND 4192228 1 GND Explorer lobid OGND AKS