Azərbaycan  AzərbaycanDeutschland  DeutschlandLietuva  LietuvaMalta  Maltaශ්‍රී ලංකාව  ශ්‍රී ලංකාවTürkmenistan  TürkmenistanTürkiyə  TürkiyəУкраина  Украина
Unterstützung
www.datawiki.de-de.nina.az
  • Heim

Dieser Artikel beschreibt den Strahlungsdetektor Für das elektronische Bauteil siehe Zählröhre Zählrohre oder Strahlungs

Proportionalzähler

  • Startseite
  • Proportionalzähler
Proportionalzähler
www.datawiki.de-de.nina.azhttps://www.datawiki.de-de.nina.az
Dieser Artikel beschreibt den Strahlungsdetektor. Für das elektronische Bauteil siehe Zählröhre.

Zählrohre oder Strahlungsmessgeräte dienen zum Nachweis und zur Messung ionisierender Strahlung, gehören also zu den Strahlungs- und Teilchendetektoren.

Je nach Bauart und Betriebsspannung arbeitet das Zählrohr

  • als Ionisationskammer,
  • als Proportionalzählrohr (auch Proportionalzähler)
  • oder als Geiger-Müller-Zählrohr (auch Auslösezählrohr, Geiger-Müller-Zähler oder Geiger-Müller-Indikator genannt).

Der häufig anzutreffende Ausdruck Geigerzähler, der auf den deutschen Physiker Hans Geiger zurückgeht, bezeichnet fachsprachlich das Geiger-Müller-Zählrohr. Umgangssprachlich kann damit jedoch auch ein komplettes Strahlungsmessgerät gemeint sein, etwa ein Kontaminationsnachweisgerät oder ein Dosisleistungsmessgerät. Der Detektor in solchen Geräten ist oft, aber nicht immer, ein Geiger-Müller-Zählrohr.

Im Prinzip ist mit ein und demselben Zählrohr jede der drei genannten Betriebsarten möglich. Die meisten Zählrohre werden aber für eine bestimmte dieser Anwendungen optimiert gebaut.

Aufbau

Die einfachsten Zählrohre bestehen aus einem an beiden Seiten verschlossenen zylindrischen Metallrohr, das die Kathode darstellt. Die Anode, ein Draht von z. B. 0,1 mm Durchmesser, befindet sich in der Achse des Zylinders und wird an einem Ende durch einen Isolator (Glas) aus dem Zählrohr herausgeführt. Der Rohrdurchmesser beträgt einige Zentimeter.

Solche Zählrohre sind zur Detektion von Gammastrahlung geeignet, da diese das Metallrohr durchdringt. Wenn auch Alpha- und Betastrahlung detektiert werden sollen, darf das Zählrohr an einem Ende nur mit einer massearmen Folie (z. B. Glimmer oder biaxial orientierter PET-Folie) verschlossen sein (Fensterzählrohr). Die Folie muss dem Druckunterschied zur Außenluft standhalten, aber die Teilchen in das Zählrohr gelangen lassen.

Das Rohr ist mit einem Gas (Zählgas) gefüllt, wie unten ausführlicher beschrieben.

Funktion

Zwischen Anode und Kathode wird eine Gleichspannung angelegt. Wenn ionisierende Strahlung einfällt, erzeugt sie in der Gasfüllung freie Elektronen, die im elektrischen Feld zur Anode wandern. Im Fall geladener Teilchenstrahlung ist die Zahl der Elektronen proportional zu der vom einfallenden Teilchen im Gas abgegebenen Energie.

Der weitere Vorgang hängt wesentlich von der Spannung zwischen Anode und Kathode ab, wie die abgebildete Kurve (Charakteristik) zeigt. Bei geringer Spannung rekombiniert ein Teil der Elektronen auf dem Weg zur Anode wieder mit den Ionen. Der im Stromkreis auftretende Stromimpuls entspricht nur den Elektronen, die die Anode erreicht haben; dieser Anteil ist je nach dem Ort der Ionisation im Rohr verschieden groß und ergibt daher keine Aussage über die vom detektierten Teilchen abgegebene Energie. Dieser Bereich der angelegten Spannung heißt Rekombinationsbereich.

Ionisationskammer

Bei höherer Spannung – Größenordnung 100 Volt – erreichen alle freigesetzten Elektronen die Anode. Der im Stromkreis messbare Impuls ist damit proportional zu der Energie, die die Strahlung im Zählrohr abgegeben hat. Das Zählrohr arbeitet jetzt als Ionisationskammer und findet beispielsweise als Streustrahlungsmessgerät Verwendung.

Soll die gesamte Energie eines Strahlungsteilchens erfasst werden, muss die Teilchenbahn im Gas enden, die Reichweite der Strahlung im Gas also kürzer als die Abmessung des Zählrohrs in Strahlenrichtung sein. Dementsprechend werden hierfür relativ große Zählrohre (bis zu etwa 1 m lang) und Gasfüllungen bis zu einigen Bar Überdruck verwendet.

Proportionalzählrohr

Bei weiterer Erhöhung der Spannung werden die durch die Strahlung freigesetzten Elektronen aufgrund der hohen elektrischen Feldstärke dicht am Anodendraht so stark beschleunigt, dass sie durch Stöße mit den Gasatomen weitere Elektronen auslösen können. Es entstehen Elektronenlawinen mit je n Elektronen (n kann bis zu 1 Million betragen); dies wird auch Gasverstärkung genannt. Da die Lawinen nur in einem sehr kleinen Raumbereich nahe der Anode auftreten, ist die Größe des gemessenen Stromimpulses unabhängig vom Ort der ursprünglichen Ionisierung und nach wie vor proportional der Energie der einfallenden Strahlung. Deshalb heißt dieser Bereich der Betriebsspannung Proportionalbereich. Der Impuls ist im Vergleich zum Ionisationskammerbetrieb n-mal größer und daher leichter messbar.

Für Abmessungen und Gasdruck gilt das Gleiche wie bei Ionisationskammern. Da der Proportionalbereich in einem steilen Teil der Charakteristik liegt, muss die Betriebsspannung sehr genau konstant sein. Während eine Ionisationskammer z. B. auch parallele Plattenelektroden haben kann, ist beim Proportionalzählrohr die Feldgeometrie mit dem dünnen Anodendraht wesentlich. Die Zylinderform der Kathode ist dagegen nicht entscheidend; Proportionalzähler können je nach geometrischen Erfordernissen auch andere Formen haben und auch mehrere parallele Anodendrähte enthalten.

Proportionalzählrohre bieten nicht nur die Möglichkeit, Teilchenenergien zu messen, sondern werden z. B. im Strahlenschutz wegen der guten Unterscheidungsmöglichkeit zwischen Alpha- und Betastrahlung verwendet. Auch die Hand-Fuß-Monitore für die Routinekontrolle beim Verlassen von Kontrollbereichen enthalten deshalb Proportionalzähler.

Aus der physikalischen Forschung ist z. B. das Homestake-Neutrinoexperiment zu nennen, wo Proportionalzähler eingesetzt wurden, um sehr seltene Beta-Zerfälle einer gasförmigen Probe sicher von anderer Strahlung unterscheiden zu können. In weiterentwickelter Form wird der Proportionalzähler als Vieldraht-Proportionalkammer und als Straw-Detektor auch in der Hochenergiephysik genutzt.

Proportionalzählrohre für Neutronen

Auch Neutronenstrahlung kann mit Proportionalzählrohren gemessen werden. Zur Energiemessung an schnellen Neutronen (etwa 0,1 bis 6 MeV) wird als Zählgas Wasserstoff oder Methan von einigen Bar Überdruck verwendet. Aus dem damit gemessenen Energiespektrum der Rückstoßprotonen aus der elastischen Streuung lässt sich auf das Neutronenspektrum schließen.

Für langsame, insbesondere für thermische Neutronen eignet sich das Gas Bortrifluorid (BF3). Die beiden in der exothermen Kernreaktion 10B(n,α{\displaystyle \alpha })7Li gleichzeitig entstehenden Ionen, das Alphateilchen und der Lithium-Atomkern, führen zur Ionisation. Zwecks höherer Nachweiswahrscheinlichkeit wird oft BF3 mit an B-10 angereichertem Bor benutzt.

Statt der BF3-Gasfüllung kann auch eine borhaltige Schicht auf der Innenseite des Zählrohrs verwendet werden. Dies hat den Vorteil, dass als Zählgas z. B. Argon genutzt werden kann, das kürzere Impulse ergibt. Nachteilig ist dagegen, dass die Kernreaktion weniger Ionisationsenergie im Gas hinterlässt, denn aus kinematischen Gründen wird immer nur eines der beiden Ionen ins Rohrinnere emittiert; die Unterscheidung von Gammaimpulsen wird dadurch schwieriger.

Das seltene Heliumisotop Helium-3 kann ebenfalls als Neutronen-Zählgas dienen. Die auch hier exotherme Reaktion ist 3He(n,p)3H. Helium-3 ist teurer als Bortrifluorid, ergibt aber eine höhere Nachweiswahrscheinlichkeit, denn es enthält keine anderen Atomkerne, der Wirkungsquerschnitt der Reaktion ist größer und es kann ein höherer Fülldruck verwendet werden. He-3-Zählrohre können bei höheren Temperaturen betrieben werden, bei denen Bortrifluorid sich zersetzen würde.

Auch die Bor- und Helium-3-Zählrohre werden im Proportional- und nicht im Geiger-Müller-Bereich (siehe unten) betrieben, um beispielsweise Gammastrahlung von Neutronenstrahlung unterscheiden zu können. Eine wichtige Anwendung (meist mit BF3-Zählrohr) ist der Long Counter.

Geiger-Müller-Zählrohr

Ab einer bestimmten noch höheren Spannung – im „Plateaubereich“ der oben abgebildeten Charakteristik – bewirkt jedes einfallende ionisierende Teilchen eine selbständige Gasentladung, das heißt, auch jedes sekundär freigesetzte Elektron löst, bevor es die Anode erreicht, seinerseits mindestens ein neues Elektron aus. Auch wird Ultraviolettstrahlung erzeugt, die an entfernten Stellen ionisiert, sodass die Entladung sich über das ganze Zählrohr ausbreitet. Der so arbeitende Zählrohrtyp heißt Geiger-Müller-Zählrohr. Die einmal eingeleitete (gezündete) Gasentladung „brennt“ unabhängig von Art und Energie der auslösenden Strahlung (daher die alternative Bezeichnung „Auslösezählrohr“) und erlischt erst, wenn sich durch die radial nach außen wandernde Ionenwolke die Feldstärke genügend verringert hat. Ein erneutes Zünden der Gasentladung beim Aufprall der Ionen auf die Rohrwand wird durch Zusatz eines Löschgases zum Füllgas verhindert (siehe unter Gasfüllung).

Die Stromimpulse sind also von einheitlicher Größe und so groß, dass sie u. U. ohne Verstärkung direkt in einem Lautsprecher als Knackgeräusche hörbar gemacht werden können. Zur Auslösung genügt schon ein einziges freigesetztes Elektron, der Detektor hat also die bestmögliche Empfindlichkeit. Der Plateaubereich der Arbeitsspannung heißt auch Geiger-Müller-Bereich.

Verglichen mit anderen Detektoren hat das Geiger-Müller-Zählrohr wegen des Gasentladungsvorgangs eine relativ lange Totzeit der Größenordnung 100 Mikrosekunden. Daran schließt sich noch eine ähnlich lange Erholungszeit an, während der ein neuer Impuls nicht die volle Höhe erreicht.
Die Totzeit entsteht dadurch, dass die Gasentladung durch einen hohen Widerstand, zum Beispiel 100 Kiloohm, in der Hochspannungszuleitung strombegrenzt wird; das erneute Zünden nach dem Impuls wird durch einen Spannungseinbruch unterbunden. Durch einen Löschgaszusatz kann die Ionen-Lebensdauer verringert werden, sodass die Totzeit geringer wird.

Verwendet werden Geiger-Müller-Zählrohre beispielsweise zur Prüfung auf Kontamination und für allgemeine Strahlenschutzzwecke. Information über Strahlenart und -energie lässt sich mit ihnen nur grob gewinnen, indem man Vergleichsmessungen mit verschiedenen zwischen Strahlenquelle und Zählrohr gebrachten Abschirmungen vornimmt.

Gasfüllung

Als Zählrohrfüllung können viele verschiedene Gase, sogar Luft, dienen.Edelgase wie z. B. Argon sind vorteilhaft zum Erzielen möglichst kurzer Impulse, weil sie keine negativen Ionen bilden, die viel langsamer als die Elektronen zur Anode wandern. Zur Detektion von Gammastrahlung wird Argon mit mehreren Bar Überdruck oder, wegen seiner hohen Ordnungszahl, Xenon verwendet. Bei Ionisationskammern und Proportionalzählern wird oft ein Anteil einer gasförmigen Verbindung beigemischt, etwa Methan oder Kohlendioxid. Dieser Zusatz verringert durch unelastische Stöße die Temperatur der Elektronen und bewirkt so eine weitere Verkürzung des Stromimpulses, macht also den Detektor „schneller“. Er unterdrückt auch Ultraviolettstrahlung, die zu überzähligen Impulsen führen könnte.

Für den Geiger-Müller-Betrieb wird dem Gas Ethanoldampf oder ein Halogengas (Chlor oder Brom) beigemischt. Dieses Löschgas sorgt dafür, dass nach dem Erlöschen der Gasentladung keine neue Zündung durch auf die Wand auftreffende Ionen erfolgt, indem seine Moleküle Energie durch Dissoziation statt durch Ionisation aufzehren.

Ortsfest betriebene Zählrohre sind in manchen Fällen nicht dicht verschlossen, sondern werden als Durchflusszähler mit langsam durchströmendem Gas betrieben. Dies vermeidet Probleme mit Verunreinigungen, chemischen Reaktionen des Gases oder kleinen Undichtigkeiten. Bei Geiger-Müller-Zählern kann so der Ethanolzusatz, der sich im Zählrohrbetrieb sonst verbrauchen würde, konstant gehalten werden.

Geschichte

Ein Vorläufer der Zählrohre wurde erstmals 1913 von Hans Geiger beschrieben. Das Geiger-Müller-Zählrohr geht auf Geigers Entwicklungsarbeiten zusammen mit seinem Mitarbeiter Walther Müller an der Christian-Albrechts-Universität zu Kiel zurück, deren Ergebnisse ab 1928 veröffentlicht wurden. Es war der erste bekannte und allgemein genutzte Detektortyp, der auf Teilchen oder Strahlungsquanten mit einem elektrischen Impuls reagierte. Die praktische Nutzung des Proportionalbereiches ist in elektronischer Hinsicht – Verstärkung der Impulse, Stabilität der Hochspannung – anspruchsvoller und wurde erst ab der Mitte des 20. Jahrhunderts zu einer Routinemethode.

Zu deutschen Herstellern von Geiger-Müller-Strahlungsmessgeräten und Streu-Strahlungsmessgeräten gehörte etwa die Frieseke & Hoepfner GmbH in Erlangen-Bruck.

Da die Impulse des Geiger-Müller-Zählrohrs für alle Teilchen gleich sind, eignet es sich vor allem zum Zählen der einfallenden Teilchen/Quanten. Die Bezeichnung „Geigerzähler“ oder „Geiger-Zählrohr“ erscheint daher natürlich. Diese Bezeichnung hat sich auf die später entwickelten Detektoren wie „Proportionalzähler“, „Szintillationszähler“ usw. übertragen, obwohl diese nicht nur zum Zählen, sondern auch zur Energiemessung und zur Unterscheidung von Strahlenarten dienen.

Literatur

  • Glenn F. Knoll: Radiation detection and measurement. 2. Auflage, Wiley, New York 1989, ISBN 0-471-81504-7.
  • Konrad Kleinknecht: Detektoren für Teilchenstrahlung. 4. Aufl., Teubner 2005, ISBN 978-3-8351-0058-9
  • Sebastian Korff: Das Geiger-Müller-Zählrohr. Eine wissenschaftshistorische Analyse mit der Replikationsmethode. In: NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin, Band 20, Heft 4, 2012, S. 271–308, (doi:10.1007/s00048-012-0080-y).

Weblinks

Wiktionary: Geigerzähler – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
Commons: Geigerzähler – Sammlung von Bildern, Videos und Audiodateien
Wikibooks: Gasgefüllte Strahlungsdetektoren – Lern- und Lehrmaterialien
  • Rapp Instruments: Bauanleitung Geiger-Müller-Zählrohr
  • Mineralienatlas:Geiger-Müller-Zähler Aufbau, Funktionsweise, Anwendung (Link vom 18. November 2016)

Einzelnachweise

  1. Knoll (s. Literaturliste) S. 166 f.
  2. B. T. Cleveland et al: Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector. In: Astrophysical Journal. 496. Jahrgang, 1998, S. 505–526, doi:10.1086/305343 (iop.org [PDF]). 
  3. C. Gerthsen: Physik, 6. Aufl., Springer, 1960.
  4. E. B. Paul: Nuclear and Particle Physics, North-Holland, 1969, S. 124.
  5. Knoll (s. Literaturliste) S. 168.
  6. Paul (s. oben) S. 127.
  7. Daten kommerzieller Strahlungsmonitoren als Beispiel (Memento vom 24. März 2009 im Internet Archive).
  8. H. Geiger, W. Müller: Elektronenzählrohr zur Messung schwächster Aktivitäten. In: Die Naturwissenschaften, 16/31, S. 617–618. (Vorgetragen und demonstriert auf der Kieler Tagung des Gauvereins Niedersachsen der Deutschen Physikalischen Gesellschaft am 7. Juli 1928).
  9. H. Geiger, W.Müller: Das Elektronenzählrohr. In: Physikalische Zeitschrift 29, S. 839–841, (1928).
  10. H. Geiger, W. Müller: Technische Bemerkungen zum Elektronenzählrohr. In: Physikalische Zeitschrift. 30, S. 489–493. (1929).
  11. H. Geiger, W. Müller: Demonstration des Elektronenzählrohrs. In: Physikalische Zeitschrift 30, S. 523 ff. (1929).
  12. Strahlungsmeßgeräte für medizinische Anwendungen. In: Münchener Medizinische Wochenschrift. Band 95, Nr. 1, 2. Januar 1953, S. CXXXIV.
  13. Bernard L. Cohen: Concepts of Nuclear Physics. New York usw.: McGraw-Hill, 1971, S. 217.
Normdaten (Sachbegriff): GND: 4131873-0 (GND Explorer, lobid, OGND, AKS)

Autor: www.NiNa.Az

Veröffentlichungsdatum: 07 Jul 2025 / 18:35

wikipedia, wiki, deutsches, deutschland, buch, bücher, bibliothek artikel lesen, herunterladen kostenlos kostenloser herunterladen, MP3, Video, MP4, 3GP, JPG, JPEG, GIF, PNG, Bild, Musik, Lied, Film, Buch, Spiel, Spiele, Mobiltelefon, Mobil, Telefon, android, ios, apple, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, computer, komputer, Informationen zu Proportionalzähler, Was ist Proportionalzähler? Was bedeutet Proportionalzähler?

Dieser Artikel beschreibt den Strahlungsdetektor Fur das elektronische Bauteil siehe Zahlrohre Zahlrohre oder Strahlungsmessgerate dienen zum Nachweis und zur Messung ionisierender Strahlung gehoren also zu den Strahlungs und Teilchendetektoren Strahlungsnachweisgerat mit Zahlrohr Je nach Bauart und Betriebsspannung arbeitet das Zahlrohr als Ionisationskammer als Proportionalzahlrohr auch Proportionalzahler oder als Geiger Muller Zahlrohr auch Auslosezahlrohr Geiger Muller Zahler oder Geiger Muller Indikator genannt Der haufig anzutreffende Ausdruck Geigerzahler der auf den deutschen Physiker Hans Geiger zuruckgeht bezeichnet fachsprachlich das Geiger Muller Zahlrohr Umgangssprachlich kann damit jedoch auch ein komplettes Strahlungsmessgerat gemeint sein etwa ein Kontaminationsnachweisgerat oder ein Dosisleistungsmessgerat Der Detektor in solchen Geraten ist oft aber nicht immer ein Geiger Muller Zahlrohr Im Prinzip ist mit ein und demselben Zahlrohr jede der drei genannten Betriebsarten moglich Die meisten Zahlrohre werden aber fur eine bestimmte dieser Anwendungen optimiert gebaut AufbauPrinzipskizze eines Zahlrohrs hier mit dunnem Endfenster fur energiearme und Teilchen Strahlung Die einfachsten Zahlrohre bestehen aus einem an beiden Seiten verschlossenen zylindrischen Metallrohr das die Kathode darstellt Die Anode ein Draht von z B 0 1 mm Durchmesser befindet sich in der Achse des Zylinders und wird an einem Ende durch einen Isolator Glas aus dem Zahlrohr herausgefuhrt Der Rohrdurchmesser betragt einige Zentimeter Solche Zahlrohre sind zur Detektion von Gammastrahlung geeignet da diese das Metallrohr durchdringt Wenn auch Alpha und Betastrahlung detektiert werden sollen darf das Zahlrohr an einem Ende nur mit einer massearmen Folie z B Glimmer oder biaxial orientierter PET Folie verschlossen sein Fensterzahlrohr Die Folie muss dem Druckunterschied zur Aussenluft standhalten aber die Teilchen in das Zahlrohr gelangen lassen Das Rohr ist mit einem Gas Zahlgas gefullt wie unten ausfuhrlicher beschrieben FunktionSchematische Charakteristik eines Zahlrohrs Senkrecht aufgetragen ist die beobachtete Impulshohe bei einfallender Strahlung einheitlicher Teilchenenergie Zwischen Anode und Kathode wird eine Gleichspannung angelegt Wenn ionisierende Strahlung einfallt erzeugt sie in der Gasfullung freie Elektronen die im elektrischen Feld zur Anode wandern Im Fall geladener Teilchenstrahlung ist die Zahl der Elektronen proportional zu der vom einfallenden Teilchen im Gas abgegebenen Energie Der weitere Vorgang hangt wesentlich von der Spannung zwischen Anode und Kathode ab wie die abgebildete Kurve Charakteristik zeigt Bei geringer Spannung rekombiniert ein Teil der Elektronen auf dem Weg zur Anode wieder mit den Ionen Der im Stromkreis auftretende Stromimpuls entspricht nur den Elektronen die die Anode erreicht haben dieser Anteil ist je nach dem Ort der Ionisation im Rohr verschieden gross und ergibt daher keine Aussage uber die vom detektierten Teilchen abgegebene Energie Dieser Bereich der angelegten Spannung heisst Rekombinationsbereich Ionisationskammer Bei hoherer Spannung Grossenordnung 100 Volt erreichen alle freigesetzten Elektronen die Anode Der im Stromkreis messbare Impuls ist damit proportional zu der Energie die die Strahlung im Zahlrohr abgegeben hat Das Zahlrohr arbeitet jetzt als Ionisationskammer und findet beispielsweise als Streustrahlungsmessgerat Verwendung Soll die gesamte Energie eines Strahlungsteilchens erfasst werden muss die Teilchenbahn im Gas enden die Reichweite der Strahlung im Gas also kurzer als die Abmessung des Zahlrohrs in Strahlenrichtung sein Dementsprechend werden hierfur relativ grosse Zahlrohre bis zu etwa 1 m lang und Gasfullungen bis zu einigen Bar Uberdruck verwendet Proportionalzahlrohr Bei weiterer Erhohung der Spannung werden die durch die Strahlung freigesetzten Elektronen aufgrund der hohen elektrischen Feldstarke dicht am Anodendraht so stark beschleunigt dass sie durch Stosse mit den Gasatomen weitere Elektronen auslosen konnen Es entstehen Elektronenlawinen mit je n Elektronen n kann bis zu 1 Million betragen dies wird auch Gasverstarkung genannt Da die Lawinen nur in einem sehr kleinen Raumbereich nahe der Anode auftreten ist die Grosse des gemessenen Stromimpulses unabhangig vom Ort der ursprunglichen Ionisierung und nach wie vor proportional der Energie der einfallenden Strahlung Deshalb heisst dieser Bereich der Betriebsspannung Proportionalbereich Der Impuls ist im Vergleich zum Ionisationskammerbetrieb n mal grosser und daher leichter messbar Fur Abmessungen und Gasdruck gilt das Gleiche wie bei Ionisationskammern Da der Proportionalbereich in einem steilen Teil der Charakteristik liegt muss die Betriebsspannung sehr genau konstant sein Wahrend eine Ionisationskammer z B auch parallele Plattenelektroden haben kann ist beim Proportionalzahlrohr die Feldgeometrie mit dem dunnen Anodendraht wesentlich Die Zylinderform der Kathode ist dagegen nicht entscheidend Proportionalzahler konnen je nach geometrischen Erfordernissen auch andere Formen haben und auch mehrere parallele Anodendrahte enthalten Proportionalzahlrohre bieten nicht nur die Moglichkeit Teilchenenergien zu messen sondern werden z B im Strahlenschutz wegen der guten Unterscheidungsmoglichkeit zwischen Alpha und Betastrahlung verwendet Auch die Hand Fuss Monitore fur die Routinekontrolle beim Verlassen von Kontrollbereichen enthalten deshalb Proportionalzahler Aus der physikalischen Forschung ist z B das Homestake Neutrinoexperiment zu nennen wo Proportionalzahler eingesetzt wurden um sehr seltene Beta Zerfalle einer gasformigen Probe sicher von anderer Strahlung unterscheiden zu konnen In weiterentwickelter Form wird der Proportionalzahler als Vieldraht Proportionalkammer und als Straw Detektor auch in der Hochenergiephysik genutzt Proportionalzahlrohre fur Neutronen Neutronendetektion im BF3 Zahlrohr Auch Neutronenstrahlung kann mit Proportionalzahlrohren gemessen werden Zur Energiemessung an schnellen Neutronen etwa 0 1 bis 6 MeV wird als Zahlgas Wasserstoff oder Methan von einigen Bar Uberdruck verwendet Aus dem damit gemessenen Energiespektrum der Ruckstossprotonen aus der elastischen Streuung lasst sich auf das Neutronenspektrum schliessen Fur langsame insbesondere fur thermische Neutronen eignet sich das Gas Bortrifluorid BF3 Die beiden in der exothermen Kernreaktion 10B n a displaystyle alpha 7Li gleichzeitig entstehenden Ionen das Alphateilchen und der Lithium Atomkern fuhren zur Ionisation Zwecks hoherer Nachweiswahrscheinlichkeit wird oft BF3 mit an B 10 angereichertem Bor benutzt Statt der BF3 Gasfullung kann auch eine borhaltige Schicht auf der Innenseite des Zahlrohrs verwendet werden Dies hat den Vorteil dass als Zahlgas z B Argon genutzt werden kann das kurzere Impulse ergibt Nachteilig ist dagegen dass die Kernreaktion weniger Ionisationsenergie im Gas hinterlasst denn aus kinematischen Grunden wird immer nur eines der beiden Ionen ins Rohrinnere emittiert die Unterscheidung von Gammaimpulsen wird dadurch schwieriger Das seltene Heliumisotop Helium 3 kann ebenfalls als Neutronen Zahlgas dienen Die auch hier exotherme Reaktion ist 3He n p 3H Helium 3 ist teurer als Bortrifluorid ergibt aber eine hohere Nachweiswahrscheinlichkeit denn es enthalt keine anderen Atomkerne der Wirkungsquerschnitt der Reaktion ist grosser und es kann ein hoherer Fulldruck verwendet werden He 3 Zahlrohre konnen bei hoheren Temperaturen betrieben werden bei denen Bortrifluorid sich zersetzen wurde Auch die Bor und Helium 3 Zahlrohre werden im Proportional und nicht im Geiger Muller Bereich siehe unten betrieben um beispielsweise Gammastrahlung von Neutronenstrahlung unterscheiden zu konnen Eine wichtige Anwendung meist mit BF3 Zahlrohr ist der Long Counter Geiger Muller Zahlrohr Zerlegtes Geiger Muller Zahlrohr fur Gammastrahlung Unten das eigentliche Zahlrohr aus Glas mit Anodendraht in der Mitte und Wendeldraht als Kathode in der Mitte Abschirmbleche die zwischen Zahlrohr und Gehause angebracht werden um die Empfindlichkeit fur Strahlung verschiedener Energie zu verandern oben das aussere Aluminiumgehause Lange 30 cm Geiger Muller Zahlrohr SBM 20 Ab einer bestimmten noch hoheren Spannung im Plateaubereich der oben abgebildeten Charakteristik bewirkt jedes einfallende ionisierende Teilchen eine selbstandige Gasentladung das heisst auch jedes sekundar freigesetzte Elektron lost bevor es die Anode erreicht seinerseits mindestens ein neues Elektron aus Auch wird Ultraviolettstrahlung erzeugt die an entfernten Stellen ionisiert sodass die Entladung sich uber das ganze Zahlrohr ausbreitet Der so arbeitende Zahlrohrtyp heisst Geiger Muller Zahlrohr Die einmal eingeleitete gezundete Gasentladung brennt unabhangig von Art und Energie der auslosenden Strahlung daher die alternative Bezeichnung Auslosezahlrohr und erlischt erst wenn sich durch die radial nach aussen wandernde Ionenwolke die Feldstarke genugend verringert hat Ein erneutes Zunden der Gasentladung beim Aufprall der Ionen auf die Rohrwand wird durch Zusatz eines Loschgases zum Fullgas verhindert siehe unter Gasfullung Die Stromimpulse sind also von einheitlicher Grosse und so gross dass sie u U ohne Verstarkung direkt in einem Lautsprecher als Knackgerausche horbar gemacht werden konnen Zur Auslosung genugt schon ein einziges freigesetztes Elektron der Detektor hat also die bestmogliche Empfindlichkeit Der Plateaubereich der Arbeitsspannung heisst auch Geiger Muller Bereich Verglichen mit anderen Detektoren hat das Geiger Muller Zahlrohr wegen des Gasentladungsvorgangs eine relativ lange Totzeit der Grossenordnung 100 Mikrosekunden Daran schliesst sich noch eine ahnlich lange Erholungszeit an wahrend der ein neuer Impuls nicht die volle Hohe erreicht Die Totzeit entsteht dadurch dass die Gasentladung durch einen hohen Widerstand zum Beispiel 100 Kiloohm in der Hochspannungszuleitung strombegrenzt wird das erneute Zunden nach dem Impuls wird durch einen Spannungseinbruch unterbunden Durch einen Loschgaszusatz kann die Ionen Lebensdauer verringert werden sodass die Totzeit geringer wird Verwendet werden Geiger Muller Zahlrohre beispielsweise zur Prufung auf Kontamination und fur allgemeine Strahlenschutzzwecke Information uber Strahlenart und energie lasst sich mit ihnen nur grob gewinnen indem man Vergleichsmessungen mit verschiedenen zwischen Strahlenquelle und Zahlrohr gebrachten Abschirmungen vornimmt GasfullungAls Zahlrohrfullung konnen viele verschiedene Gase sogar Luft dienen Edelgase wie z B Argon sind vorteilhaft zum Erzielen moglichst kurzer Impulse weil sie keine negativen Ionen bilden die viel langsamer als die Elektronen zur Anode wandern Zur Detektion von Gammastrahlung wird Argon mit mehreren Bar Uberdruck oder wegen seiner hohen Ordnungszahl Xenon verwendet Bei Ionisationskammern und Proportionalzahlern wird oft ein Anteil einer gasformigen Verbindung beigemischt etwa Methan oder Kohlendioxid Dieser Zusatz verringert durch unelastische Stosse die Temperatur der Elektronen und bewirkt so eine weitere Verkurzung des Stromimpulses macht also den Detektor schneller Er unterdruckt auch Ultraviolettstrahlung die zu uberzahligen Impulsen fuhren konnte Fur den Geiger Muller Betrieb wird dem Gas Ethanoldampf oder ein Halogengas Chlor oder Brom beigemischt Dieses Loschgas sorgt dafur dass nach dem Erloschen der Gasentladung keine neue Zundung durch auf die Wand auftreffende Ionen erfolgt indem seine Molekule Energie durch Dissoziation statt durch Ionisation aufzehren Ortsfest betriebene Zahlrohre sind in manchen Fallen nicht dicht verschlossen sondern werden als Durchflusszahler mit langsam durchstromendem Gas betrieben Dies vermeidet Probleme mit Verunreinigungen chemischen Reaktionen des Gases oder kleinen Undichtigkeiten Bei Geiger Muller Zahlern kann so der Ethanolzusatz der sich im Zahlrohrbetrieb sonst verbrauchen wurde konstant gehalten werden GeschichteGeigerzahler 1932 Science Museum London Ein Vorlaufer der Zahlrohre wurde erstmals 1913 von Hans Geiger beschrieben Das Geiger Muller Zahlrohr geht auf Geigers Entwicklungsarbeiten zusammen mit seinem Mitarbeiter Walther Muller an der Christian Albrechts Universitat zu Kiel zuruck deren Ergebnisse ab 1928 veroffentlicht wurden Es war der erste bekannte und allgemein genutzte Detektortyp der auf Teilchen oder Strahlungsquanten mit einem elektrischen Impuls reagierte Die praktische Nutzung des Proportionalbereiches ist in elektronischer Hinsicht Verstarkung der Impulse Stabilitat der Hochspannung anspruchsvoller und wurde erst ab der Mitte des 20 Jahrhunderts zu einer Routinemethode Zu deutschen Herstellern von Geiger Muller Strahlungsmessgeraten und Streu Strahlungsmessgeraten gehorte etwa die Frieseke amp Hoepfner GmbH in Erlangen Bruck Da die Impulse des Geiger Muller Zahlrohrs fur alle Teilchen gleich sind eignet es sich vor allem zum Zahlen der einfallenden Teilchen Quanten Die Bezeichnung Geigerzahler oder Geiger Zahlrohr erscheint daher naturlich Diese Bezeichnung hat sich auf die spater entwickelten Detektoren wie Proportionalzahler Szintillationszahler usw ubertragen obwohl diese nicht nur zum Zahlen sondern auch zur Energiemessung und zur Unterscheidung von Strahlenarten dienen LiteraturGlenn F Knoll Radiation detection and measurement 2 Auflage Wiley New York 1989 ISBN 0 471 81504 7 Konrad Kleinknecht Detektoren fur Teilchenstrahlung 4 Aufl Teubner 2005 ISBN 978 3 8351 0058 9 Sebastian Korff Das Geiger Muller Zahlrohr Eine wissenschaftshistorische Analyse mit der Replikationsmethode In NTM Zeitschrift fur Geschichte der Wissenschaften Technik und Medizin Band 20 Heft 4 2012 S 271 308 doi 10 1007 s00048 012 0080 y WeblinksWiktionary Geigerzahler Bedeutungserklarungen Wortherkunft Synonyme Ubersetzungen Commons Geigerzahler Sammlung von Bildern Videos und Audiodateien Wikibooks Gasgefullte Strahlungsdetektoren Lern und Lehrmaterialien Rapp Instruments Bauanleitung Geiger Muller Zahlrohr Mineralienatlas Geiger Muller Zahler Aufbau Funktionsweise Anwendung Link vom 18 November 2016 EinzelnachweiseKnoll s Literaturliste S 166 f B T Cleveland et al Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector In Astrophysical Journal 496 Jahrgang 1998 S 505 526 doi 10 1086 305343 iop org PDF C Gerthsen Physik 6 Aufl Springer 1960 E B Paul Nuclear and Particle Physics North Holland 1969 S 124 Knoll s Literaturliste S 168 Paul s oben S 127 Daten kommerzieller Strahlungsmonitoren als Beispiel Memento vom 24 Marz 2009 im Internet Archive H Geiger W Muller Elektronenzahlrohr zur Messung schwachster Aktivitaten In Die Naturwissenschaften 16 31 S 617 618 Vorgetragen und demonstriert auf der Kieler Tagung des Gauvereins Niedersachsen der Deutschen Physikalischen Gesellschaft am 7 Juli 1928 H Geiger W Muller Das Elektronenzahlrohr In Physikalische Zeitschrift 29 S 839 841 1928 H Geiger W Muller Technische Bemerkungen zum Elektronenzahlrohr In Physikalische Zeitschrift 30 S 489 493 1929 H Geiger W Muller Demonstration des Elektronenzahlrohrs In Physikalische Zeitschrift 30 S 523 ff 1929 Strahlungsmessgerate fur medizinische Anwendungen In Munchener Medizinische Wochenschrift Band 95 Nr 1 2 Januar 1953 S CXXXIV Bernard L Cohen Concepts of Nuclear Physics New York usw McGraw Hill 1971 S 217 Normdaten Sachbegriff GND 4131873 0 GND Explorer lobid OGND AKS

Neueste Artikel
  • Juni 28, 2025

    Rentabilitätsregulierung

  • Juni 29, 2025

    Rentabilitätsrechnung

  • Juni 24, 2025

    Rentabilität

  • Juni 24, 2025

    Religiosität

  • Juli 02, 2025

    Religionspädagogik

www.NiNa.Az - Studio

    Kontaktieren Sie uns
    Sprachen
    Kontaktieren Sie uns
    DMCA Sitemap
    © 2019 nina.az - Alle Rechte vorbehalten.
    Copyright: Dadash Mammadov
    Eine kostenlose Website, die Daten- und Dateiaustausch aus der ganzen Welt ermöglicht.
    Spi.