Die elektrische Leitfähigkeit auch als Konduktivität oder EC Wert vom englischen electrical conductivity bezeichnet ist
Elektrische Leitfähigkeit

Die elektrische Leitfähigkeit, auch als Konduktivität oder EC-Wert (vom englischen electrical conductivity) bezeichnet, ist eine Stoffeigenschaft und physikalische Größe, die angibt, wie gut elektrischer Strom geleitet wird.
Physikalische Größe | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Name | elektrische Leitfähigkeit | ||||||||||||
Formelzeichen | , , | ||||||||||||
| |||||||||||||
Siehe auch: spezifischer Widerstand, elektrischer Leitwert |
Das Formelzeichen der elektrischen Leitfähigkeit ist (griechisch sigma), auch (gamma), in der Elektrochemie und Elektrotechnik auch (kappa). Die abgeleitete SI-Einheit der elektrischen Leitfähigkeit ist S/m (Siemens pro Meter). Der Kehrwert der elektrischen Leitfähigkeit ist der spezifische Widerstand.
Die elektrische Leitfähigkeit ist definiert als die Proportionalitätskonstante zwischen der Stromdichte und der elektrischen Feldstärke :
Im Spezialfall konstanter elektrischer Leitfähigkeit entspricht diese Definitionsgleichung dem ohmschen Gesetz.
Leitfähigkeit als Tensor und Vektorfeld
Im speziellen Fall eines isotropen (nicht von der Richtung abhängigen) und linearen (nicht von Einflussgrößen abhängigen) Mediums ist die elektrische Leitfähigkeit ein Skalar (eindimensionale Größe). Nur in diesem einfachen, in der Anwendung aber häufigen Fall erfolgt daher die Stromleitung proportional und in derselben Richtung wie das die Stromdichte verursachende elektrische Feld. In diesem Fall gilt das ohmsche Gesetz.
In einem anisotropen und linearen Material ist die elektrische Leitfähigkeit ein Tensor 2. Stufe (Dyade), also eine mehrdimensionale Größe. Beispiele für Materialien mit solchen Eigenschaften sind Materialien mit Strukturen wie Graphit, Kristalle und Hochtemperatursupraleiter.
Selbst wenn der spezifische Widerstand eines Materials bekannt ist, kann die Berechnung der Leitfähigkeit eines daraus hergestellten Gegenstands in einigen Fällen viel komplizierter sein als die Formel . Ein Beispiel ist die Profilierung des Ausbreitungsleitwert, bei der das Material inhomogen ist (unterschiedliche Leitfähigkeit an verschiedenen Stellen) und die genauen Wege des Stromflusses nicht offensichtlich sind.
wobei und nun Vektorfelder sind. Diese Gleichung bildet zusammen mit der Kontinuitätsgleichung für und der Poisson-Gleichung für eine Reihe von partiellen Differentialgleichungen. In speziellen Fällen kann eine exakte oder annähernde Lösung dieser Gleichungen von Hand berechnet werden, aber für sehr genaue Antworten in komplexen Fällen können Computermethoden wie die Finite-Elemente-Analyse erforderlich sein.
Zusammenhänge und Einheiten
Es ist zu beachten, dass obige Gleichung – sie zählt zu den drei fundamentalen Materialgleichungen – sich nicht aus den Maxwellschen Gleichungen ableiten lässt. Die Maxwellschen Gleichungen mit den Kontinuitätsgesetzen und den Materialgleichungen stellen das Fundament der nichtrelativistischen elektrodynamischen Feldtheorie dar.
Der Leitwert als Kehrwert des Widerstandes ist eine Eigenschaft eines Körpers. Die Leitfähigkeit als Kehrwert des spezifischen Widerstands ist eine Eigenschaft eines Materials. und sind miteinander verknüpft über einen Faktor, der sich aus dem geometrischen Aufbau des Körpers ergibt.
Hinweis: Die grundlegenden Normen wie DIN 1304, DIN EN 80000-6, IEC 60050 bzw. IEV verwenden den Begriff „Leitfähigkeit“ oder „elektrische Leitfähigkeit“, aber ein Zusatz „spezifisch“ kommt dort im Zusammenhang mit Leitfähigkeit nicht vor. Die Abhängigkeit vom jeweiligen Material steckt bereits in der Definition des Begriffs.
Die abgeleitete SI-Einheit der elektrischen Leitfähigkeit ist S/m (Siemens pro Meter). Gebräuchlich sind zudem S/cm, m/(Ω·mm2) und S·m/mm2, wobei die Zusammenhänge 1 S/cm = 100 S/m und 1 m/(Ω·mm2) = 1 S·m/mm2 = 106 S/m gelten.
Eine weitere besonders in den USA gebräuchliche Einheit ist IACS, für englisch International Annealed Copper Standard. Hier wird die Leitfähigkeit in Bezug zur Leitfähigkeit in reinem geglühten Kupfer ausgedrückt: 100 % IACS = 58 · 106 S/m.
Elektrische Leitfähigkeit verschiedener Stoffe
Material | Einordnung | σ in S/m | Quelle |
---|---|---|---|
Graphen | Nichtmetall | 1e8 | |
Silber | Metall | 6.1e7 | |
Kupfer | Metall | 5.8e7 | |
Gold | Metall | 4.5e7 | |
Aluminium | Metall | 3.7e7 | |
Eisen | Metall | 1.0e7 | |
Stahl C35 (WNr. 1.0501) | Metall | 8.6e6 | |
Blei | Metall | 4.7e6 | |
Graphit (parallel zu Schichten) | Nichtmetall | 3e6 | |
Graphit (quer zu Schichten) | Nichtmetall | 3e2 | |
Edelstahl WNr. 1.4301 | Metall | 1.4e6 | |
Quecksilber | Metall | 1.0e6 | |
Mangan | Metall | 6.9e5 | |
Germanium (Fremdanteil < 10−9) | Halbleiter | 2e0 | |
Silizium (Fremdanteil < 10−12) | Halbleiter | 5e-4 | |
Silizium (dotiert) | Halbleiter | 100…106 | |
Leitfähige Polymere | Polymer | 10−11…105 | |
Polytetrafluorethylen („Teflon“) | Polymer | < 10−16 | |
Meerwasser | Elektrolyt | 5e0 | |
Leitungswasser Trinkwasser | Elektrolyt | 5e-3…5e-2 | |
Reinstwasser | Elektrolyt | 5.5e-6 |
Die elektrische Leitfähigkeit ergibt sich vorzugsweise ohne Veränderung des Stoffes durch einen Transport von Elektronen. Derartige Stoffe werden unterteilt in
- Supraleiter (viele Metalle, verschiedene Legierungen, einige wenige Keramiken und manche Fullerene)
- Unterhalb einer materialabhängigen Sprungtemperatur sinkt der elektrische Widerstand auf null und die Leitfähigkeit wird unendlich.
- Leiter (insbesondere alle Metalle)
- Typisch (bei 25 °C): >106 S/m.
- Die geringste elektrische Leitfähigkeit aller reinen Metalle hat Mangan, die größte hat Silber, das fast 100-mal besser leitet.
- Reine Metalle leiten den elektrischen Strom besser als Legierungen. Selbst in reinen Metallen ist die Leitfähigkeit unterschiedlich je nach Gitteraufbau. Auch Kaltverformungen und Erwärmungen mit Veränderung des Gefüges beeinträchtigen die Leitfähigkeit. Beispielsweise leitet der angegebene Edelstahl im Verhältnis 1:7 schlechter als Reineisen.
- Halbleiter (beispielsweise Silicium, Germanium)
- Bei Halbleitern hängt die Leitfähigkeit herausragend vom Reinheitsgrad ab, ferner stärker von der Temperatur und dem Druck als bei Metallen. Als einigermaßen reproduzierbare Materialeigenschaft lässt sich die Eigenleitfähigkeit angeben. Die Leitfähigkeit von Halbleitern liegt zwischen der von Leitern und Nichtleitern. Diese Einteilung stammt noch aus Zeiten, als man die Möglichkeit noch nicht kannte, ihre Leitfähigkeit durch gezielte Einlagerung von Fremdatomen (Dotierung) extrem zu verändern (Faktor 106). Hierzu hat sich eine eigene Halbleitertechnik entwickelt.
- Nichtleiter (die meisten Nichtmetalle, Kohlenwasserstoffe und andere organische Verbindungen)
- Typisch < 10−8 S/m oder < 10−10 S/m.
- Wie die tabellierten Daten der leitfähigen Polymere zeigen, ist die Grenze zum Nichtleiter fließend; die angegebenen Grenzwerte sind Ermessensentscheidungen.
- Die Leitfähigkeit guter Isolatoren beträgt ca. 10−16 S/m.
Daneben gibt es in Elektrolyten eine mit Stofftransport verbundene Ionenleitung.
Ursache der Leitfähigkeit
Die Leitfähigkeit eines Stoffes oder Stoffgemisches hängt von der Verfügbarkeit und Dichte beweglicher Ladungsträger ab. Diese können locker gebundene Elektronen wie beispielsweise in Metallen, aber auch Ionen oder delokalisierte Elektronen in organischen Molekülen sein, wie sie häufig durch mesomere Grenzstrukturen beschrieben werden. Stoffe mit vielen frei beweglichen Ladungsträgern sind somit leitfähig.
Real besitzt jedes Material eine gewisse, wenn auch manchmal sehr geringe, Leitfähigkeit. Selbst alle Nichtleiter und elektrische Isolierstoffe oder Isolatoren können einen Stromfluss nicht vollständig verhindern. Jedoch sind die Ströme so gering, dass sie oft vernachlässigt werden können.
Alle Nichtleiter bzw. Isolatoren können bei Anlegen einer ausreichend hohen Spannung oder durch starkes Erhitzen (höhere bzw. hohe) elektrische Ströme leiten, wobei die Struktur des Nichtleiters aber meistens zerstört wird (er zerfällt oder schmilzt), vor allem wenn er ein Festkörper war.
Beispielsweise werden Diamant und Glas bei Rotglut (ca. 1000 K) leitfähig.
Beispiele
Metalle
Metalle sind Elektronenleiter. Deren Elektronen im Leitungsband sind beweglich und transportieren den elektrischen Strom sehr gut.
Ionenleitung
Reinstwasser hat eine gewisse Leitfähigkeit (Ionenleitung, ca. 1:1013-fach geringer als bei Metallen, jedoch immer noch ca. 1000-mal leitfähiger als ein Isolierstoff). Werden dem Wasser Salze, Säuren oder Basen hinzugefügt, die in wässriger Lösung freibewegliche Ionen freisetzen, steigt die Leitfähigkeit an (bereits Leitungswasser hat eine um rund 4 Zehnerpotenzen größere Leitfähigkeit).
Brände in Niederspannungsanlagen bis 1000 V können weitgehend problemlos mit Wasser gelöscht werden; in Hochspannungsanlagen (z. B. Schaltanlagen) sollen Brände nicht mit Wasser gelöscht werden, um das Löschpersonal nicht dem Risiko eines Stromschlags auszusetzen. Nasslöscher (Löschmittel Wasser) können nach DIN VDE 0132 in Niederspannungsanlagen aus mindestens 1 m Abstand (Sprühstrahl) bzw. 3 m Abstand (Vollstrahl) benutzt werden.
Dotierung (Elektronen, Defektelektronen)
Mit einer Dotierung kann man die Leitfähigkeit von Halbleitern stark beeinflussen (um viele Zehnerpotenzen). Wird das (höchstreine) Grundmaterial mit Elektronendonatoren (Elemente mit mehr Außenelektronen als das Grundmaterial) versetzt, spricht man von n-Dotierung (negativ geladene quasi-freie Ladungsträger in Überzahl im Vergleich zu den positiv geladenen), bei Zusatz von Elektronenakzeptoren (Elemente mit weniger Elektronen als das Grundmaterial) dagegen von p-Dotierung (positiv geladene quasi-freie Ladungsträger in Überzahl im Vergleich zu den negativ geladenen). Durch die p-Dotierung entstehen Elektronenfehlstellen, auch Löcher oder Defektelektronen genannt, die ebenso die Leitung des elektrischen Stroms ermöglichen wie die überzähligen Elektronen im Falle n-dotierter Halbleiter. Die Leitfähigkeit entsteht dadurch, dass die Löcher bzw. Elektronen beweglich sind – wenn auch nicht so beweglich wie die Elektronen in Metallen.
Halbleiter-Bauelemente wie Dioden und Transistoren beruhen auf den Effekten an den Grenzstellen von verschieden dotierten Bereichen, bei denen die Leitfähigkeit beispielsweise von Betrag und Richtung der elektrischen Feldstärke abhängt.
Siehe auch
Ein Modell zur Veranschaulichung oder Erklärung der Leitfähigkeit eines Kristalls ist durch das Bändermodell gegeben.
Da die thermische Leitfähigkeit in metallischen Festkörpern vor allem durch die Elektronen bestimmt wird, sind elektrische und thermische Leitfähigkeit durch das Wiedemann-Franz-Gesetz verknüpft.
Ursache des elektrischen Widerstandes
1900 formulierte Paul Drude ein nach ihm benanntes Modell, wonach der elektrische Widerstand durch Kollision der Leitungselektronen mit den als starr angenommenen Atomrümpfen des Metalls verursacht wird. Danach ist die Leitfähigkeit
- .
Hier ist die Konzentration freier Elektronen, die Ladung, die Masse eines Elektrons und die mittlere Flugzeit des Elektrons zwischen zwei Stößen (Relaxationszeit). Dieses Modell veranschaulicht die elektrische Leitfähigkeit zwar recht gut, sagt aber manche experimentellen Ergebnisse falsch voraus, da die Annahme des freien Elektronengases zu ungenau ist: Elektronen sind Fermionen, das heißt, jeder Energiezustand im reziproken k-Raum kann nur von zwei Elektronen eingenommen werden, so dass selbst am absoluten Nullpunkt Energieniveaus bis zur Fermi-Energie besetzt sind und die Fermi-Kugel bilden. Die temperaturabhängige Wahrscheinlichkeit, ob ein Energieniveau mit Elektronen besetzt ist, wird dabei durch die Fermi-Dirac-Verteilung
angegeben. Da die Fermi-Energie mit einigen Elektronenvolt wesentlich größer als die thermische Energie mit einigen Dutzend Millielektronenvolt ist, sind nur Elektronen nahe der Fermi-Energie angeregt und tragen zur elektrischen Leitfähigkeit bei. Im Nicht-Gleichgewichtszustand wird die Zeitabhängigkeit der Verteilung durch die Boltzmann-Gleichung beschrieben. Mit dieser Verbesserung, der Sommerfeld-Theorie, folgt schließlich die gleiche Leitfähigkeit wie nach Drude, jedoch mit zwei entscheidenden Veränderungen:
- Die Relaxationszeit ist die Relaxationszeit der Elektronen an der Fermikante, also die der Elektronen mit der Energie .
- Die Masse der Elektronen hat im Kristall scheinbar eine abweichende, effektive Masse , die richtungsabhängig und somit auch eine tensorielle Größe ist.
Der Reziprokwert der Relaxationszeit, die Streurate (Anzahl von Streuungen pro Zeit), ist dabei die Summe der individuellen Streuraten der Elektronen an Schwingungen der Atomrümpfe (den Phononen), an anderen Elektronen, an Gitterfehlern (Fremdatomen, Fehlstellen etc.) im Kristall oder auch den Wänden des Kristalls. Daraus ergibt sich eine Verallgemeinerung der Matthiessenschen Regel:
Die individuellen Relaxationszeiten führen zu den verschiedenen Temperaturabhängigkeiten der Leitfähigkeit im Metall. So ist z. B. die Streuung an Störstellen temperaturunabhängig und führt zum Restwiderstand, wohingegen die Elektron-Phonon-Streuung bei Zimmertemperatur proportional zur Temperatur ist.
Wenn man in einem allgemeinen Festkörper die Beweglichkeit der Ladungsträger berücksichtigt, ergibt sich:
wobei die Ladungsträgerdichte (Anzahl pro Volumen) ausdrückt.
Erweitert man diesen Ausdruck weiter, so erhält man:
Dabei ist die Elektronendichte und deren Beweglichkeit sowie der Defektelektronendichte und deren Beweglichkeit .
Messung
Die elektrische Leitfähigkeit kann nicht direkt gemessen werden, sondern wird meist mittels Transportmessungen aus Stromstärke, Spannungsabfall und Probengeometrie analog zum spezifischen Widerstand bestimmt. Je nach Probengeometrie können verschiedene Verfahren verwendet werden.
In Flüssigkeiten werden z. B. bei einfachen Messungen Elektroden bekannter Fläche und bekannten Abstandes eingesetzt und die Spannung und Stromstärke gemessen, siehe Leitfähigkeitsmessgerät. Die Formel hierzu ist:
Bei einem vorzugsweise in einer Dimension ausgedehnten guten Leiter mit bekanntem Querschnitt (wie bei einem Draht) wird die Leitfähigkeit mittels Vierleitermessung bestimmt, wobei der Strom durch den Leiter und der Spannungsabfall zwischen zwei im Abstand befindlichen Messkontakten ist. Die Einspeisung des Stromes erfolgt hierbei jenseits dieser Messkontakte, um Messfehler zu vermeiden.
Ein Verfahren zur Messung des spezifischen Flächenwiderstandes einer großflächigen, homogenen Schicht ist die Vier-Punkt-Methode und wird vor allem in der Halbleiterindustrie angewendet. Ist die Schicht dagegen klein und hat eine beliebige Form, kann die Leitfähigkeit mit der Van-der-Pauw-Messmethode bestimmt werden.
Erste Leitfähigkeitsmessgeräte, auch als Konduktometer bezeichnet, gehen auf Arbeiten von Jean-Jacques Rousseau und das historische Messgerät Diagometer zurück.
Temperaturabhängigkeit
Die elektrische Leitfähigkeit ist abhängig von der Temperatur. Der Verlauf dieser Temperaturabhängigkeit ist abhängig vom Aufbau und von der Art des Materials bzw. von den dominierenden Mechanismen für den Transport von elektrischen Ladungen.
Der Temperaturverlauf ist häufig nur innerhalb kleiner Temperaturänderungen linear oder zeigt sogar sprunghafte Änderungen (zum Beispiel bei Phasenübergängen wie dem Schmelzen oder beim Erreichen der Sprungtemperatur bei Supraleitern).
In Metallen sinkt die Leitfähigkeit bei steigender Temperatur aufgrund zunehmender Gitterschwingungen, die den Elektronenstrom behindern. Sie haben einen positiven Temperaturkoeffizienten des elektrischen Widerstandes. So hat eine elektrische Glühlampe im stromlosen Zustand eine sehr viel höhere Leitfähigkeit als im Betrieb. Im Augenblick des Einschaltens fließt daher zunächst ein hoher Einschaltstrom (bis zu zehnmal größer als der Betriebsstrom). Ist die Glühwendel erhitzt, sinkt der Strom auf den Nennwert. Eine Faustregel lautet, dass der Widerstand pro Grad Temperaturerhöhung um 0,5 % seines Wertes steigt. Glühlampen können daher zur Strombegrenzung bzw. als thermische Sicherung verwendet werden, z. B. zum Schutz von Hochtonlautsprechern in Lautsprecherboxen. Kleine Glühlampen wurden auch zur Verstärkungs- bzw. Amplitudenregelung in Wien-Brücken-Sinusgeneratoren verwendet.
In Halbleitern nimmt die Beweglichkeit zwar ebenfalls aufgrund der Gitterschwingungen ab, aber die Ladungsträgerdichte kann sich auch verändern. Im Bereich der Störstellenreserve und Eigenleitung steigt sie überproportional (genauer: exponentiell) durch Anregung von Elektronen ins Leitungsband. Im Bereich der Störstellenleitung bleibt die Ladungsträgerdichte dagegen annähernd konstant. Die Leitfähigkeit kann also mit der Temperatur stark steigen oder leicht sinken und hängt somit auch von der Dotierung ab.
Eine praktische Anwendung der Temperaturabhängigkeit bei Halbleitern ist die Temperaturmessung mit Hilfe einer stromdurchflossenen Diode – ihre Flussspannung verringert sich streng linear mit steigender Temperatur. Zur Temperaturmessung und zur Einschaltstrombegrenzung werden Heißleiter eingesetzt, deren Leitfähigkeit mit der Temperatur stark steigt. Bei Kaltleitern erhöht sich der Widerstand bei Erwärmung, sie werden zum Beispiel als thermische oder selbstrückstellende Sicherung verwendet.
In Supraleitern sinkt unterhalb der Sprungtemperatur der Widerstand auf null, verschwindet also. Beim Überschreiten der Sprungtemperatur tritt der Widerstand genauso plötzlich wieder auf, was bei stromdurchflossenen Spulen aus Supraleitern zur Zerstörung durch Quenchen, also massive Überhitzung der betroffenen Stelle, führen kann.
In Gasen, Lösungen und Elektrolyten ist der Widerstand stark temperaturabhängig, da dort die Beweglichkeit und die Anzahl der Ionen mit steigender Temperatur stark zunimmt (bei schwachen Elektrolyten ist der Dissoziationsgrad stark temperaturabhängig). In der Regel steigt die Ladungsträgerbeweglichkeit mit der Temperatur und die Leitfähigkeit steigt.
Literatur
- Neil W. Ashcroft, N. David Mermin: Solid State Physics. Saunders College Publishing, New York 1976, ISBN 0-03-083993-9.
Weblinks
- Leitfähigkeit im Elektronik-Kompendium
Einzelnachweise
- Steffen Paul: Grundlagen der Elektrotechnik und Elektronik 2 – Elektromagnetische Felder und ihre Anwendungen. 2. Auflage. Band 2. Springer Vieweg, ISBN 978-3-662-58221-3, S. 51.
- EN 80000-6: Größen und Einheiten – Teil 6: Elektromagnetismus. 2013, Eintrag 6–43.
- IEC 60050, deutschsprachige Ausgabe bei DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik in DIN und VDE: Internationales Elektrotechnisches Wörterbuch, IEV-Nummer 121-12-03.
- Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene. University Communications Newsdesk, University of Maryland, 19. September 2013, archiviert vom 19. September 2013; abgerufen am 5. April 2017. am
- Electrical resistivity. In: webelements.com. Mark Winter/The University of Sheffield, abgerufen am 12. Dezember 2020 (englisch, grafische Darstellung in Abhängigkeit von der Position im Periodensystem).
- Datenblatt für Cu 99,9 % (PDF) Der Wert gilt bei 20 °C mit einer Toleranz von ±10 %; abgerufen am 12. April 2018.
- Für Kupferkabel gilt typisch ca. 56e6 S/m (kein reines Kupfer), siehe Spezifischer Widerstand.
- Nasser Kanani: Galvanotechnik. Hanser, 2020, ISBN 978-3-446-46256-4, S. 77.
- Arnold F. Holleman, Nils Wieberg: Anorganische Chemie, Band 1: Grundlagen und Hauptgruppenelemente. 103. Aufl., De Gruyter, 2017, S. 998.
- Firmenschrift, abgerufen am 12. März 2021.
- Wilfried Plaßmann, Detlef Schulz (Hrsg.): Handbuch Elektrotechnik: Grundlagen und Anwendungen für Elektrotechniker. 5. Aufl., Vieweg+Teubner, 2009, S. 231.
- Konrad Reif (Hrsg.): Bosch Autoelektrik und Autoelektronik: Bordnetze, Sensoren und elektronische Systeme. 6. Aufl., Vieweg + Teubner, 2011, ISBN 9783834899026, S. 168.
- PTFE-Eigenschaften und -Stoffwerte. (PDF; 91 kB), englisch.
- DuPont Teflon/PTFE Properties Handbook. (PDF; 189 kB), S. 29.
- Datenblatt Polytetrafluorethylen bei Kern, abgerufen am 7. November 2019.
- lenntech.de
- „Eigenleitfähigkeit“ 4,2 μS/m bei 20 °C, 5,5 μS/m bei 25 °C. In: Kurt Marquardt u. a: Rein- und Reinstwasseraufbereitung. Expert-Verlag, 1994, S. 274 f.
- Günther Rau, Reinhold Ströbel: Die Metalle: Werkstoffkunde mit ihren chemischen und physikalischen Grundlagen. 19. Aufl., Verlag Neuer Merkur, 2004, S. 57.
- Leonhard Stiny: Aktive elektronische Bauelemente. Aufbau, Struktur, Wirkungsweise, Eigenschaften und praktischer Einsatz diskreter und integrierter Halbleiter-Bauteile. Springer-Verlag, 2016, ISBN 978-3-658-14387-9 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 8. November 2019]).
- Ellen Ivers-Tiffée, Waldemar von Münch: Werkstoffe der Elektrotechnik. Teubner, 10. Aufl., 2007, S. 57.
- Heinrich Frohne: Einführung in die Elektrotechnik. Grundlagen und Netzwerke. Springer-Verlag, 2013, ISBN 978-3-322-91788-1 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 3. August 2016]).
- Johann Reth, Hellmut Kruschwitz, Dieter Müllenborn, Klemens Herrmann: Grundlagen der Elektrotechnik. Springer-Verlag, 2013, ISBN 978-3-322-85081-2 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 12. September 2016]).
- Heinz Josef Bauckholt: Grundlagen und Bauelemente der Elektrotechnik. Carl Hanser Verlag GmbH & Company KG, 2013, ISBN 978-3-446-43708-1 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 12. September 2016]).
- Günther Oberdorfer: Kurzes Lehrbuch der Elektrotechnik. Springer-Verlag, 2013, ISBN 978-3-7091-5062-7 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 3. August 2016]).
- Karl Küpfmüller, Wolfgang Mathis, Albrecht Reibiger: Theoretische Elektrotechnik. Eine Einführung. Springer-Verlag, 2013, ISBN 978-3-642-37940-6 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 3. August 2016]).
- Richard Marenbach, Dieter Nelles, Christian Tuttas: Elektrische Energietechnik. Grundlagen, Energieversorgung, Antriebe und Leistungselektronik. Springer-Verlag, 2013, ISBN 978-3-8348-2190-4 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 3. August 2016]).
- Hansgeorg Hofmann, Jürgen Spindler: Werkstoffe in der Elektrotechnik. Grundlagen – Struktur – Eigenschaften – Prüfung – Anwendung – Technologie. Carl Hanser Verlag GmbH & Company KG, 2013, ISBN 978-3-446-43748-7 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 20. November 2016]).
- Eugene G. Rochow: Silicium und Silicone. Über steinzeitliche Werkzeuge, antike Töpfereien, moderne Keramik, Computer, Werkstoffe für die Raumfahrt, und wie es dazu kam. Springer-Verlag, 2013, ISBN 978-3-662-09896-7 (eingeschränkte Vorschau in der Google-Buchsuche [abgerufen am 29. August 2016]).
- Temperaturabhängigkeit des elektrischen Widerstandes. (PDF; 892 kB).
Autor: www.NiNa.Az
Veröffentlichungsdatum:
wikipedia, wiki, deutsches, deutschland, buch, bücher, bibliothek artikel lesen, herunterladen kostenlos kostenloser herunterladen, MP3, Video, MP4, 3GP, JPG, JPEG, GIF, PNG, Bild, Musik, Lied, Film, Buch, Spiel, Spiele, Mobiltelefon, Mobil, Telefon, android, ios, apple, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, computer, komputer, Informationen zu Elektrische Leitfähigkeit, Was ist Elektrische Leitfähigkeit? Was bedeutet Elektrische Leitfähigkeit?
Die elektrische Leitfahigkeit auch als Konduktivitat oder EC Wert vom englischen electrical conductivity bezeichnet ist eine Stoffeigenschaft und physikalische Grosse die angibt wie gut elektrischer Strom geleitet wird Physikalische GrosseName elektrische LeitfahigkeitFormelzeichen s displaystyle sigma g displaystyle gamma k displaystyle kappa Grossen und Einheitensystem Einheit DimensionSI S m 1 W m 1 M 1 L 3 T3 I2Gauss esE cgs s 1 T 1emE cgs cm 2 s L 2 TSiehe auch spezifischer Widerstand elektrischer Leitwert Das Formelzeichen der elektrischen Leitfahigkeit ist s displaystyle sigma griechisch sigma auch g displaystyle gamma gamma in der Elektrochemie und Elektrotechnik auch k displaystyle kappa kappa Die abgeleitete SI Einheit der elektrischen Leitfahigkeit ist S m Siemens pro Meter Der Kehrwert der elektrischen Leitfahigkeit ist der spezifische Widerstand Die elektrische Leitfahigkeit ist definiert als die Proportionalitatskonstante zwischen der Stromdichte J displaystyle vec J und der elektrischen Feldstarke E displaystyle vec E J sE displaystyle vec J sigma vec E Im Spezialfall konstanter elektrischer Leitfahigkeit entspricht diese Definitionsgleichung dem ohmschen Gesetz Leitfahigkeit als Tensor und VektorfeldIm speziellen Fall eines isotropen nicht von der Richtung abhangigen und linearen nicht von Einflussgrossen abhangigen Mediums ist die elektrische Leitfahigkeit ein Skalar eindimensionale Grosse Nur in diesem einfachen in der Anwendung aber haufigen Fall erfolgt daher die Stromleitung proportional und in derselben Richtung wie das die Stromdichte verursachende elektrische Feld In diesem Fall gilt das ohmsche Gesetz In einem anisotropen und linearen Material ist die elektrische Leitfahigkeit ein Tensor 2 Stufe Dyade also eine mehrdimensionale Grosse Beispiele fur Materialien mit solchen Eigenschaften sind Materialien mit Strukturen wie Graphit Kristalle und Hochtemperatursupraleiter Selbst wenn der spezifische Widerstand eines Materials bekannt ist kann die Berechnung der Leitfahigkeit eines daraus hergestellten Gegenstands in einigen Fallen viel komplizierter sein als die Formel s I lU A textstyle sigma frac I cdot l U cdot A Ein Beispiel ist die Profilierung des Ausbreitungsleitwert bei der das Material inhomogen ist unterschiedliche Leitfahigkeit an verschiedenen Stellen und die genauen Wege des Stromflusses nicht offensichtlich sind J r s r E r E r r r J r displaystyle J r sigma r E r rightleftharpoons E r rho r J r wobei E displaystyle E und J displaystyle J nun Vektorfelder sind Diese Gleichung bildet zusammen mit der Kontinuitatsgleichung fur J displaystyle J und der Poisson Gleichung fur E displaystyle E eine Reihe von partiellen Differentialgleichungen In speziellen Fallen kann eine exakte oder annahernde Losung dieser Gleichungen von Hand berechnet werden aber fur sehr genaue Antworten in komplexen Fallen konnen Computermethoden wie die Finite Elemente Analyse erforderlich sein Zusammenhange und EinheitenEs ist zu beachten dass obige Gleichung sie zahlt zu den drei fundamentalen Materialgleichungen sich nicht aus den Maxwellschen Gleichungen ableiten lasst Die Maxwellschen Gleichungen mit den Kontinuitatsgesetzen und den Materialgleichungen stellen das Fundament der nichtrelativistischen elektrodynamischen Feldtheorie dar Der Leitwert G displaystyle G als Kehrwert des Widerstandes ist eine Eigenschaft eines Korpers Die Leitfahigkeit s displaystyle sigma als Kehrwert des spezifischen Widerstands ist eine Eigenschaft eines Materials G displaystyle G und s displaystyle sigma sind miteinander verknupft uber einen Faktor der sich aus dem geometrischen Aufbau des Korpers ergibt Hinweis Die grundlegenden Normen wie DIN 1304 DIN EN 80000 6 IEC 60050 bzw IEV verwenden den Begriff Leitfahigkeit oder elektrische Leitfahigkeit aber ein Zusatz spezifisch kommt dort im Zusammenhang mit Leitfahigkeit nicht vor Die Abhangigkeit vom jeweiligen Material steckt bereits in der Definition des Begriffs Die abgeleitete SI Einheit der elektrischen Leitfahigkeit ist S m Siemens pro Meter Gebrauchlich sind zudem S cm m W mm2 und S m mm2 wobei die Zusammenhange 1 S cm 100 S m und 1 m W mm2 1 S m mm2 106 S m gelten Eine weitere besonders in den USA gebrauchliche Einheit ist IACS fur englisch International Annealed Copper Standard Hier wird die Leitfahigkeit in Bezug zur Leitfahigkeit in reinem gegluhten Kupfer ausgedruckt 100 IACS 58 106 S m Elektrische Leitfahigkeit verschiedener StoffeElektrische Leitfahigkeit ausgewahlter Materialien bei 20 bis 25 C Die Daten hangen teilweise erheblich vom Reinheitsgrad ab Material Einordnung s in S m QuelleGraphen Nichtmetall 1e 8Silber Metall 6 1e 7Kupfer Metall 5 8e 7Gold Metall 4 5e 7Aluminium Metall 3 7e 7Eisen Metall 1 0e 7Stahl C35 WNr 1 0501 Metall 8 6e 6Blei Metall 4 7e 6Graphit parallel zu Schichten Nichtmetall 3e 6Graphit quer zu Schichten Nichtmetall 3e 2Edelstahl WNr 1 4301 Metall 1 4e 6Quecksilber Metall 1 0e 6Mangan Metall 6 9e 5Germanium Fremdanteil lt 10 9 Halbleiter 2e 0Silizium Fremdanteil lt 10 12 Halbleiter 5e 4Silizium dotiert Halbleiter 100 106Leitfahige Polymere Polymer 10 11 105Polytetrafluorethylen Teflon Polymer lt 10 16Meerwasser Elektrolyt 5e 0Leitungswasser Trinkwasser Elektrolyt 5e 3 5e 2Reinstwasser Elektrolyt 5 5e 6 Die elektrische Leitfahigkeit ergibt sich vorzugsweise ohne Veranderung des Stoffes durch einen Transport von Elektronen Derartige Stoffe werden unterteilt in Supraleiter viele Metalle verschiedene Legierungen einige wenige Keramiken und manche Fullerene Unterhalb einer materialabhangigen Sprungtemperatur sinkt der elektrische Widerstand auf null und die Leitfahigkeit wird unendlich Leiter insbesondere alle Metalle Typisch bei 25 C gt 106 S m Die geringste elektrische Leitfahigkeit aller reinen Metalle hat Mangan die grosste hat Silber das fast 100 mal besser leitet Reine Metalle leiten den elektrischen Strom besser als Legierungen Selbst in reinen Metallen ist die Leitfahigkeit unterschiedlich je nach Gitteraufbau Auch Kaltverformungen und Erwarmungen mit Veranderung des Gefuges beeintrachtigen die Leitfahigkeit Beispielsweise leitet der angegebene Edelstahl im Verhaltnis 1 7 schlechter als Reineisen Halbleiter beispielsweise Silicium Germanium Bei Halbleitern hangt die Leitfahigkeit herausragend vom Reinheitsgrad ab ferner starker von der Temperatur und dem Druck als bei Metallen Als einigermassen reproduzierbare Materialeigenschaft lasst sich die Eigenleitfahigkeit angeben Die Leitfahigkeit von Halbleitern liegt zwischen der von Leitern und Nichtleitern Diese Einteilung stammt noch aus Zeiten als man die Moglichkeit noch nicht kannte ihre Leitfahigkeit durch gezielte Einlagerung von Fremdatomen Dotierung extrem zu verandern Faktor 106 Hierzu hat sich eine eigene Halbleitertechnik entwickelt Nichtleiter die meisten Nichtmetalle Kohlenwasserstoffe und andere organische Verbindungen Typisch lt 10 8 S m oder lt 10 10 S m Wie die tabellierten Daten der leitfahigen Polymere zeigen ist die Grenze zum Nichtleiter fliessend die angegebenen Grenzwerte sind Ermessensentscheidungen Die Leitfahigkeit guter Isolatoren betragt ca 10 16 S m Daneben gibt es in Elektrolyten eine mit Stofftransport verbundene Ionenleitung Hauptartikel Elektrolytische Leitfahigkeit und Molare LeitfahigkeitUrsache der LeitfahigkeitDie Leitfahigkeit eines Stoffes oder Stoffgemisches hangt von der Verfugbarkeit und Dichte beweglicher Ladungstrager ab Diese konnen locker gebundene Elektronen wie beispielsweise in Metallen aber auch Ionen oder delokalisierte Elektronen in organischen Molekulen sein wie sie haufig durch mesomere Grenzstrukturen beschrieben werden Stoffe mit vielen frei beweglichen Ladungstragern sind somit leitfahig Real besitzt jedes Material eine gewisse wenn auch manchmal sehr geringe Leitfahigkeit Selbst alle Nichtleiter und elektrische Isolierstoffe oder Isolatoren konnen einen Stromfluss nicht vollstandig verhindern Jedoch sind die Strome so gering dass sie oft vernachlassigt werden konnen Alle Nichtleiter bzw Isolatoren konnen bei Anlegen einer ausreichend hohen Spannung oder durch starkes Erhitzen hohere bzw hohe elektrische Strome leiten wobei die Struktur des Nichtleiters aber meistens zerstort wird er zerfallt oder schmilzt vor allem wenn er ein Festkorper war Beispielsweise werden Diamant und Glas bei Rotglut ca 1000 K leitfahig Beispiele Metalle Metalle sind Elektronenleiter Deren Elektronen im Leitungsband sind beweglich und transportieren den elektrischen Strom sehr gut Ionenleitung Reinstwasser hat eine gewisse Leitfahigkeit Ionenleitung ca 1 1013 fach geringer als bei Metallen jedoch immer noch ca 1000 mal leitfahiger als ein Isolierstoff Werden dem Wasser Salze Sauren oder Basen hinzugefugt die in wassriger Losung freibewegliche Ionen freisetzen steigt die Leitfahigkeit an bereits Leitungswasser hat eine um rund 4 Zehnerpotenzen grossere Leitfahigkeit Brande in Niederspannungsanlagen bis 1000 V konnen weitgehend problemlos mit Wasser geloscht werden in Hochspannungsanlagen z B Schaltanlagen sollen Brande nicht mit Wasser geloscht werden um das Loschpersonal nicht dem Risiko eines Stromschlags auszusetzen Nassloscher Loschmittel Wasser konnen nach DIN VDE 0132 in Niederspannungsanlagen aus mindestens 1 m Abstand Spruhstrahl bzw 3 m Abstand Vollstrahl benutzt werden Dotierung Elektronen Defektelektronen Mit einer Dotierung kann man die Leitfahigkeit von Halbleitern stark beeinflussen um viele Zehnerpotenzen Wird das hochstreine Grundmaterial mit Elektronendonatoren Elemente mit mehr Aussenelektronen als das Grundmaterial versetzt spricht man von n Dotierung negativ geladene quasi freie Ladungstrager in Uberzahl im Vergleich zu den positiv geladenen bei Zusatz von Elektronenakzeptoren Elemente mit weniger Elektronen als das Grundmaterial dagegen von p Dotierung positiv geladene quasi freie Ladungstrager in Uberzahl im Vergleich zu den negativ geladenen Durch die p Dotierung entstehen Elektronenfehlstellen auch Locher oder Defektelektronen genannt die ebenso die Leitung des elektrischen Stroms ermoglichen wie die uberzahligen Elektronen im Falle n dotierter Halbleiter Die Leitfahigkeit entsteht dadurch dass die Locher bzw Elektronen beweglich sind wenn auch nicht so beweglich wie die Elektronen in Metallen Halbleiter Bauelemente wie Dioden und Transistoren beruhen auf den Effekten an den Grenzstellen von verschieden dotierten Bereichen bei denen die Leitfahigkeit beispielsweise von Betrag und Richtung der elektrischen Feldstarke abhangt Siehe auch Ein Modell zur Veranschaulichung oder Erklarung der Leitfahigkeit eines Kristalls ist durch das Bandermodell gegeben Da die thermische Leitfahigkeit in metallischen Festkorpern vor allem durch die Elektronen bestimmt wird sind elektrische und thermische Leitfahigkeit durch das Wiedemann Franz Gesetz verknupft Ursache des elektrischen Widerstandes1900 formulierte Paul Drude ein nach ihm benanntes Modell wonach der elektrische Widerstand durch Kollision der Leitungselektronen mit den als starr angenommenen Atomrumpfen des Metalls verursacht wird Danach ist die Leitfahigkeit s ne2tm displaystyle sigma frac ne 2 tau m Hier ist n displaystyle n die Konzentration freier Elektronen e displaystyle e die Ladung m displaystyle m die Masse eines Elektrons und t displaystyle tau die mittlere Flugzeit des Elektrons zwischen zwei Stossen Relaxationszeit Dieses Modell veranschaulicht die elektrische Leitfahigkeit zwar recht gut sagt aber manche experimentellen Ergebnisse falsch voraus da die Annahme des freien Elektronengases zu ungenau ist Elektronen sind Fermionen das heisst jeder Energiezustand im reziproken k Raum E k E p E v displaystyle E k E p approx E v kann nur von zwei Elektronen eingenommen werden so dass selbst am absoluten Nullpunkt Energieniveaus bis zur Fermi Energie EF displaystyle E text F besetzt sind und die Fermi Kugel bilden Die temperaturabhangige Wahrscheinlichkeit ob ein Energieniveau E k displaystyle E k mit Elektronen besetzt ist wird dabei durch die Fermi Dirac Verteilung f0 k T 1eE k EFkBT 1 displaystyle f 0 k T frac 1 mathrm e frac E k E text F k text B T 1 angegeben Da die Fermi Energie EF displaystyle E text F mit einigen Elektronenvolt wesentlich grosser als die thermische Energie kBT displaystyle k text B T mit einigen Dutzend Millielektronenvolt ist sind nur Elektronen nahe der Fermi Energie angeregt und tragen zur elektrischen Leitfahigkeit bei Im Nicht Gleichgewichtszustand wird die Zeitabhangigkeit der Verteilung durch die Boltzmann Gleichung beschrieben Mit dieser Verbesserung der Sommerfeld Theorie folgt schliesslich die gleiche Leitfahigkeit wie nach Drude jedoch mit zwei entscheidenden Veranderungen Die Relaxationszeit t displaystyle tau ist die Relaxationszeit der Elektronen an der Fermikante also die der Elektronen mit der Energie EF displaystyle E text F Die Masse der Elektronen m displaystyle m hat im Kristall scheinbar eine abweichende effektive Masse m displaystyle m die richtungsabhangig und somit auch eine tensorielle Grosse ist Der Reziprokwert der Relaxationszeit die Streurate Anzahl von Streuungen pro Zeit ist dabei die Summe der individuellen Streuraten der Elektronen an Schwingungen der Atomrumpfe den Phononen an anderen Elektronen an Gitterfehlern Fremdatomen Fehlstellen etc im Kristall oder auch den Wanden des Kristalls Daraus ergibt sich eine Verallgemeinerung der Matthiessenschen Regel 1t 1tPhonon 1tElektron 1tStorstellen r 1s displaystyle frac 1 tau frac 1 tau text Phonon frac 1 tau text Elektron frac 1 tau text Storstellen dotsb propto rho frac 1 sigma Die individuellen Relaxationszeiten fuhren zu den verschiedenen Temperaturabhangigkeiten der Leitfahigkeit im Metall So ist z B die Streuung an Storstellen temperaturunabhangig und fuhrt zum Restwiderstand wohingegen die Elektron Phonon Streuung bei Zimmertemperatur proportional zur Temperatur ist Wenn man in einem allgemeinen Festkorper die Beweglichkeit der Ladungstrager m et m displaystyle mu e tau m berucksichtigt ergibt sich s enm displaystyle sigma en mu wobei n displaystyle n die Ladungstragerdichte Anzahl pro Volumen ausdruckt Erweitert man diesen Ausdruck weiter so erhalt man s e nmn pmp displaystyle sigma e n mu n p mu p Dabei ist die Elektronendichte n displaystyle n und deren Beweglichkeit mn displaystyle mu n sowie der Defektelektronendichte p displaystyle p und deren Beweglichkeit mp displaystyle mu p MessungDie elektrische Leitfahigkeit kann nicht direkt gemessen werden sondern wird meist mittels Transportmessungen aus Stromstarke Spannungsabfall und Probengeometrie analog zum spezifischen Widerstand bestimmt Je nach Probengeometrie konnen verschiedene Verfahren verwendet werden In Flussigkeiten werden z B bei einfachen Messungen Elektroden bekannter Flache A displaystyle A und bekannten Abstandes l displaystyle l eingesetzt und die Spannung U displaystyle U und Stromstarke I displaystyle I gemessen siehe Leitfahigkeitsmessgerat Die Formel hierzu ist s I lU A displaystyle sigma frac I cdot l U cdot A Bei einem vorzugsweise in einer Dimension ausgedehnten guten Leiter mit bekanntem Querschnitt A displaystyle A wie bei einem Draht wird die Leitfahigkeit mittels Vierleitermessung bestimmt wobei I displaystyle I der Strom durch den Leiter und U displaystyle U der Spannungsabfall zwischen zwei im Abstand l displaystyle l befindlichen Messkontakten ist Die Einspeisung des Stromes erfolgt hierbei jenseits dieser Messkontakte um Messfehler zu vermeiden Ein Verfahren zur Messung des spezifischen Flachenwiderstandes einer grossflachigen homogenen Schicht ist die Vier Punkt Methode und wird vor allem in der Halbleiterindustrie angewendet Ist die Schicht dagegen klein und hat eine beliebige Form kann die Leitfahigkeit mit der Van der Pauw Messmethode bestimmt werden Erste Leitfahigkeitsmessgerate auch als Konduktometer bezeichnet gehen auf Arbeiten von Jean Jacques Rousseau und das historische Messgerat Diagometer zuruck TemperaturabhangigkeitDie elektrische Leitfahigkeit ist abhangig von der Temperatur Der Verlauf dieser Temperaturabhangigkeit ist abhangig vom Aufbau und von der Art des Materials bzw von den dominierenden Mechanismen fur den Transport von elektrischen Ladungen Der Temperaturverlauf ist haufig nur innerhalb kleiner Temperaturanderungen linear oder zeigt sogar sprunghafte Anderungen zum Beispiel bei Phasenubergangen wie dem Schmelzen oder beim Erreichen der Sprungtemperatur bei Supraleitern In Metallen sinkt die Leitfahigkeit bei steigender Temperatur aufgrund zunehmender Gitterschwingungen die den Elektronenstrom behindern Sie haben einen positiven Temperaturkoeffizienten des elektrischen Widerstandes So hat eine elektrische Gluhlampe im stromlosen Zustand eine sehr viel hohere Leitfahigkeit als im Betrieb Im Augenblick des Einschaltens fliesst daher zunachst ein hoher Einschaltstrom bis zu zehnmal grosser als der Betriebsstrom Ist die Gluhwendel erhitzt sinkt der Strom auf den Nennwert Eine Faustregel lautet dass der Widerstand pro Grad Temperaturerhohung um 0 5 seines Wertes steigt Gluhlampen konnen daher zur Strombegrenzung bzw als thermische Sicherung verwendet werden z B zum Schutz von Hochtonlautsprechern in Lautsprecherboxen Kleine Gluhlampen wurden auch zur Verstarkungs bzw Amplitudenregelung in Wien Brucken Sinusgeneratoren verwendet In Halbleitern nimmt die Beweglichkeit zwar ebenfalls aufgrund der Gitterschwingungen ab aber die Ladungstragerdichte kann sich auch verandern Im Bereich der Storstellenreserve und Eigenleitung steigt sie uberproportional genauer exponentiell durch Anregung von Elektronen ins Leitungsband Im Bereich der Storstellenleitung bleibt die Ladungstragerdichte dagegen annahernd konstant Die Leitfahigkeit kann also mit der Temperatur stark steigen oder leicht sinken und hangt somit auch von der Dotierung ab Eine praktische Anwendung der Temperaturabhangigkeit bei Halbleitern ist die Temperaturmessung mit Hilfe einer stromdurchflossenen Diode ihre Flussspannung verringert sich streng linear mit steigender Temperatur Zur Temperaturmessung und zur Einschaltstrombegrenzung werden Heissleiter eingesetzt deren Leitfahigkeit mit der Temperatur stark steigt Bei Kaltleitern erhoht sich der Widerstand bei Erwarmung sie werden zum Beispiel als thermische oder selbstruckstellende Sicherung verwendet In Supraleitern sinkt unterhalb der Sprungtemperatur der Widerstand auf null verschwindet also Beim Uberschreiten der Sprungtemperatur tritt der Widerstand genauso plotzlich wieder auf was bei stromdurchflossenen Spulen aus Supraleitern zur Zerstorung durch Quenchen also massive Uberhitzung der betroffenen Stelle fuhren kann In Gasen Losungen und Elektrolyten ist der Widerstand stark temperaturabhangig da dort die Beweglichkeit und die Anzahl der Ionen mit steigender Temperatur stark zunimmt bei schwachen Elektrolyten ist der Dissoziationsgrad stark temperaturabhangig In der Regel steigt die Ladungstragerbeweglichkeit mit der Temperatur und die Leitfahigkeit steigt LiteraturNeil W Ashcroft N David Mermin Solid State Physics Saunders College Publishing New York 1976 ISBN 0 03 083993 9 WeblinksLeitfahigkeit im Elektronik KompendiumEinzelnachweiseSteffen Paul Grundlagen der Elektrotechnik und Elektronik 2 Elektromagnetische Felder und ihre Anwendungen 2 Auflage Band 2 Springer Vieweg ISBN 978 3 662 58221 3 S 51 EN 80000 6 Grossen und Einheiten Teil 6 Elektromagnetismus 2013 Eintrag 6 43 IEC 60050 deutschsprachige Ausgabe bei DKE Deutsche Kommission Elektrotechnik Elektronik Informationstechnik in DIN und VDE Internationales Elektrotechnisches Worterbuch IEV Nummer 121 12 03 Physicists Show Electrons Can Travel More Than 100 Times Faster in Graphene University Communications Newsdesk University of Maryland 19 September 2013 archiviert vom Original am 19 September 2013 abgerufen am 5 April 2017 Electrical resistivity In webelements com Mark Winter The University of Sheffield abgerufen am 12 Dezember 2020 englisch grafische Darstellung in Abhangigkeit von der Position im Periodensystem Datenblatt fur Cu 99 9 PDF Der Wert gilt bei 20 C mit einer Toleranz von 10 abgerufen am 12 April 2018 Fur Kupferkabel gilt typisch ca 56e 6 S m kein reines Kupfer siehe Spezifischer Widerstand Nasser Kanani Galvanotechnik Hanser 2020 ISBN 978 3 446 46256 4 S 77 Arnold F Holleman Nils Wieberg Anorganische Chemie Band 1 Grundlagen und Hauptgruppenelemente 103 Aufl De Gruyter 2017 S 998 Firmenschrift abgerufen am 12 Marz 2021 Wilfried Plassmann Detlef Schulz Hrsg Handbuch Elektrotechnik Grundlagen und Anwendungen fur Elektrotechniker 5 Aufl Vieweg Teubner 2009 S 231 Konrad Reif Hrsg Bosch Autoelektrik und Autoelektronik Bordnetze Sensoren und elektronische Systeme 6 Aufl Vieweg Teubner 2011 ISBN 9783834899026 S 168 PTFE Eigenschaften und Stoffwerte PDF 91 kB englisch DuPont Teflon PTFE Properties Handbook PDF 189 kB S 29 Datenblatt Polytetrafluorethylen bei Kern abgerufen am 7 November 2019 lenntech de Eigenleitfahigkeit 4 2 mS m bei 20 C 5 5 mS m bei 25 C In Kurt Marquardt u a Rein und Reinstwasseraufbereitung Expert Verlag 1994 S 274 f Gunther Rau Reinhold Strobel Die Metalle Werkstoffkunde mit ihren chemischen und physikalischen Grundlagen 19 Aufl Verlag Neuer Merkur 2004 S 57 Leonhard Stiny Aktive elektronische Bauelemente Aufbau Struktur Wirkungsweise Eigenschaften und praktischer Einsatz diskreter und integrierter Halbleiter Bauteile Springer Verlag 2016 ISBN 978 3 658 14387 9 eingeschrankte Vorschau in der Google Buchsuche abgerufen am 8 November 2019 Ellen Ivers Tiffee Waldemar von Munch Werkstoffe der Elektrotechnik Teubner 10 Aufl 2007 S 57 Heinrich Frohne Einfuhrung in die Elektrotechnik Grundlagen und Netzwerke Springer Verlag 2013 ISBN 978 3 322 91788 1 eingeschrankte Vorschau in der Google Buchsuche abgerufen am 3 August 2016 Johann Reth Hellmut Kruschwitz Dieter Mullenborn Klemens Herrmann Grundlagen der Elektrotechnik Springer Verlag 2013 ISBN 978 3 322 85081 2 eingeschrankte Vorschau in der Google Buchsuche abgerufen am 12 September 2016 Heinz Josef Bauckholt Grundlagen und Bauelemente der Elektrotechnik Carl Hanser Verlag GmbH amp Company KG 2013 ISBN 978 3 446 43708 1 eingeschrankte Vorschau in der Google Buchsuche abgerufen am 12 September 2016 Gunther Oberdorfer Kurzes Lehrbuch der Elektrotechnik Springer Verlag 2013 ISBN 978 3 7091 5062 7 eingeschrankte Vorschau in der Google Buchsuche abgerufen am 3 August 2016 Karl Kupfmuller Wolfgang Mathis Albrecht Reibiger Theoretische Elektrotechnik Eine Einfuhrung Springer Verlag 2013 ISBN 978 3 642 37940 6 eingeschrankte Vorschau in der Google Buchsuche abgerufen am 3 August 2016 Richard Marenbach Dieter Nelles Christian Tuttas Elektrische Energietechnik Grundlagen Energieversorgung Antriebe und Leistungselektronik Springer Verlag 2013 ISBN 978 3 8348 2190 4 eingeschrankte Vorschau in der Google Buchsuche abgerufen am 3 August 2016 Hansgeorg Hofmann Jurgen Spindler Werkstoffe in der Elektrotechnik Grundlagen Struktur Eigenschaften Prufung Anwendung Technologie Carl Hanser Verlag GmbH amp Company KG 2013 ISBN 978 3 446 43748 7 eingeschrankte Vorschau in der Google Buchsuche abgerufen am 20 November 2016 Eugene G Rochow Silicium und Silicone Uber steinzeitliche Werkzeuge antike Topfereien moderne Keramik Computer Werkstoffe fur die Raumfahrt und wie es dazu kam Springer Verlag 2013 ISBN 978 3 662 09896 7 eingeschrankte Vorschau in der Google Buchsuche abgerufen am 29 August 2016 Temperaturabhangigkeit des elektrischen Widerstandes PDF 892 kB Normdaten Sachbegriff GND 4014200 0 GND Explorer lobid OGND AKS LCCN sh85041621