Azərbaycan  AzərbaycanDeutschland  DeutschlandLietuva  LietuvaMalta  Maltaශ්‍රී ලංකාව  ශ්‍රී ලංකාවTürkmenistan  TürkmenistanTürkiyə  TürkiyəУкраина  Украина
Unterstützung
www.datawiki.de-de.nina.az
  • Heim

Der Großwasserraumkessel ist ein Dampfkessel und dient der Erzeugung von Wasserdampf oder Heißwasser in Industrieunterne

Großwasserraumkessel

  • Startseite
  • Großwasserraumkessel
Großwasserraumkessel
www.datawiki.de-de.nina.azhttps://www.datawiki.de-de.nina.az

Der Großwasserraumkessel ist ein Dampfkessel und dient der Erzeugung von Wasserdampf oder Heißwasser in Industrieunternehmen und an Bord von Dampfschiffen oder Dampflokomotiven. Charakteristisch für die Kesselbauart ist ein zylindrischer Wasser-Dampf-Raum mit ebenen oder gekrempten Böden. Die Befeuerung erfolgte ursprünglich von außen. Bei aktuellen Konstruktionen erfolgt die Beheizung ausschließlich von innen über das Flammrohr und Rauchrohre. Im Gegensatz zum Wasserrohrkessel wird das Rauchgas in den Rohren geführt.

Historische Entwicklung

Kofferkessel

Die ersten Dampfkessel im Überdruckbereich zum Ende des 18. Jahrhunderts, die Dampf mit einem Überdruck von 0,5–1 bar erzeugten, waren genietete, der Form wegen so genannte, Kofferkessel, auch bekannt als Wagenkessel oder, nach ihrem Erfinder, Watt’sche Kessel; James Watt hatte 1770 den ersten Kofferkessel konstruiert. Wegen ihrer großen, flachen Wände können sie nur geringe Dampfdrücke aushalten und wurden bereits ab dem frühen 19. Jahrhundert durch Hochdruck-Kessel mit zylindrischem Querschnitt ersetzt, nachdem Oliver Evans 1786 den ersten Walzenkessel für seine 1784 erdachte Hochdruck-Dampfmaschine konstruierte.

Walzenkessel

Es folgte der Walzenkessel, als Urform der spannungsgünstigen Bauform mit zylindrischem Mantel und gewölbten Böden. In der Regel wurde der Kessel liegend betrieben. Es gab aber auch stehende Ausführungen, die in Hüttenwerken eingesetzt wurden und mit den abziehenden Gasen aus Flammen- und Glühöfen beheizt wurden.

Der Kessel war eingemauert und wurde von unten befeuert. Die Rauchgase wurden um die Außenwandungen des Kessels geleitet. In dem Mauerwerk waren Züge eingemauert, um die Wärme des Rauchgases so gut wie möglich zu nutzen. Oft waren unterhalb der Kessel 2 getrennte Kanäle angelegt worden. Der Kessel wurde mit leichtem Gefälle nach hinten aufgestellt, damit der gebildete Schlamm nach hinten zum Abschlammventil abgeleitet wird und der Wärmeübergang von der Kesselsohle nicht noch weiter behindert wird.

Der Durchmesser der Walzenkessel betrug bis zu 1,5 m bei einer Länge bis zu 10 m. Bei dieser Dimensionierung erreicht man eine Heizfläche von 25 m². Die flächenspezifische Dampfleistung beträgt 10–12 kg Dampf pro m² und Stunde; so dass die Dampfleistung des Walzenkessels auf 300 kg/h begrenzt ist.

Der Walzenkessel war eine kostengünstige Bauart. Der Kesselstein konnte einfach mit dem Kesselsteinhammer gelöst werden, da keine Einbauten diese Arbeit behindern. Die Wärmeausnutzung ist sehr ungünstig und der Kessel bedarf einer sehr langen Aufheizzeit und war somit nur für kontinuierlich arbeitende Betriebe einsetzbar.

Heute werden Walzenkessel wegen ihrer einfachen und kostengünstigen Bauart noch bei Spielzeug-Dampfmaschinen verwendet.

Mehrfache Walzenkessel

Der mehrfache Walzenkessel besteht aus dem oben liegenden Hauptkessel oder Oberkessel und darunter liegenden kleineren Kesseln, die als Unterkessel bezeichnet werden. Die Unterkessel weisen etwa zwei Drittel des Durchmessers des Hauptkessels auf. Der Durchmesser des Unterkessels sollte aber 55 cm nicht unterschreiten, um den Teil auch befahren und vom Kesselstein reinigen zu können. Die Teilkessel sind durch Stutzen miteinander verbunden. Es gab Anordnungen mit zwei Unterkesseln, die nebeneinander angeordnet wurden. Es sind je nach Dampfbedarf auch mehrere Teilkessel übereinander verbunden worden; diese wurden dann als Batteriekessel bezeichnet. Die Feuerung wurde unter den Oberkessel gelegt, wobei Plan- oder Schrägroste zur Anwendung kamen. Die Rauchgase wurden dann um die Unterkessel geleitet. Der Schlamm setzte sich in dem unteren Kessel ab.

Der Walzenkessel mit einem Unterkessel hat eine Heizfläche bis 50 m²; mit 2 Unterkesseln sind es 70 m². Batteriekessel erreichten Heizflächen bis 150 m². Die Heizflächenbelastung ist vergleichbar mit der des einfachen Walzenkessels.

Flammrohr-/Rauchrohrkessel

Als weiterer Entwicklungsschritt entstand 1811 der Flammrohrkessel oder Cornwallkessel. Dieser bestand aus einem zylindrischen Mantel und einem Flammrohr, das zwischen den beiden Kesselböden eingenietet wurde. Die ersten Kessel dieser Bauart konnten mit einem Druck bis 7 bar betrieben werden. Die Kesselbauart stellte schon höhere Anforderungen an den Hersteller. Die Feuerung erfolgte ausschließlich mit Festbrennstoffen. Ein Planrost ist entweder im Flammrohr eingebaut oder die Feuerung wird in einer vorgelagerten Brennkammer betrieben, die als Schrägrost ausgeführt sein kann.

Der Wärmeübergang erfolgte durch Strahlung im Bereich der Flammenausbildung und Konvektion. Diese Kessel waren eingemauert und die Rauchgase wurden durch gemauerte Zwischenwände um die Mantelwand geleitet, so dass der Wärmeinhalt des Rauchgases so gut wie möglich genutzt werden konnten. Eine Weiterentwicklung bildete der Doppelflammrohrkessel, auch Lancashirekessel. Diese Bauart war in Industriebetrieben weit verbreitet, wenn Dampf mit Drücken bis ca. 16 bar benötigt wurde. Diese Kessel wurden in Kesselanlagen des Bergbaus oft eingesetzt, um Dampf für die Fördermaschinen zu erzeugen oder in Industriebetrieben, die Dampfmaschinen für den Antrieb einer Transmission einsetzten. Ein wichtiger Aspekt in der Dimensionierung war der ausreichende Freiraum im Kessel, um Kesselstein durch händisches Picken entfernen zu können. Flammrohrkessel wurden immer mit einem Dampfdom ausgestattet.

Genietete Dampfkessel wurden bis etwa 1945 gebaut. Nachteil der Flammrohrkessel war die nicht optimale Nutzung des Wärmeinhalts der Rauchgase, da eine Vergrößerung der Heizfläche konstruktionsbedingt am Kessel selbst nicht möglich ist. Eine optimierte Ausnutzung der Rauchgaswärme war nur durch den Einbau von Nachschaltheizflächen möglich, die als Überhitzer oder Speisewasservorwärmer einsetzbar sind.

Zur Mitte des 20. Jahrhunderts hatte sich auch die Schweißtechnik und die Güte der Werkstoffe soweit entwickelt, dass Schweißverbindungen auch für höher belastete Bauteile zuverlässig hergestellt werden konnten. Hinzu kommt, dass nahtlose Stahlrohre seit Ende des 19. Jahrhunderts (Mannesmann) zur Verfügung standen. Es wurde der Flammrohrrauchrohrkessel entwickelt, den folgende Konstruktionsdetails auszeichnen:

  • alle Verbindungen sind geschweißt,
  • Der Kessel hat ein Flammrohr und die Rauchgase werden mehrfach in Längsrichtung des Kessels umgeleitet. Der Kessel weist mehrere Züge auf (2–5 Rauchgaszüge), die durch am hinteren und vorderen Boden verbunden sind.

Über den Flammrohren sind die sogenannten Rauchrohre für die weitere Nutzung der Rauchgaswärme eingezogen, die wesentlich kleiner im Durchmesser sind als die Flammrohre. Der konvektive Wärmeübergang in einer Vielzahl von Rauchrohren ist bei geringerem Durchmesser wegen der größeren Reynolds-Zahl wesentlich besser als bei einem Rohr mit großem Durchmesser. Außerdem wird bei Rohren mit geringem Durchmesser eine größere Heizfläche im Verhältnis zur Gesamtquerschnittsfläche der Rohre erreicht. Der Flammrohr-Rauchrohr-Kessel wird nur noch von innen beheizt. Es entfällt das Mauerwerk und die Wandungen sind nach außen wärmegedämmt ausgeführt.

  • Blick in einen genieteten Flamm­rohr­kessel, Baujahr 1945
  • Doppel­flamm­rohr­kessel der Zeche Carl (Kesselhaus abgerissen)
  • Historischer Doppel­flamm­rohr­kessel
  • Moderner Groß­wasser­raum­kessel mit Brenner

Konstruktive Details

Werkstoffspannungen an den Kesselbauteilen treten in erster Linie durch den Dampfdruck auf. Der Mantel wird durch den Innendruck belastet, während das Flammrohr einer Druckbelastung von außen ausgesetzt ist. Daher muss das Flammrohr gegen Einbeulen ausgelegt werden. Flammrohrrauchrohrkessel mit niedriger Belastung haben oft ein glattes Flammrohr und ebene Böden. Großraumwasserkessel mit höheren Betriebsdrücken sind mit gewellten Flammrohren (höhere Festigkeit gegenüber Einbeulen) und ebenen gekrempten Böden ausgeführt. Der Vorteil des gekrempten Bodens ist die Lage der Schweißnaht im zylindrischen Bereich vor der Krempe, so dass die Naht nur durch Zugspannungen belastet wird. Bei ebenen Scheibenböden treten zusätzlich ungünstige Biegespannungen auf. Daneben treten Spannungen durch Temperaturunterschiede durch die Beheizung auf. Während die unbeheizten Flächen (Kesselmantel) etwa Sattdampftemperatur aufweisen, liegt die Temperatur an den Heizflächen höher. Der Temperaturunterschied beträgt beim Kessel ohne wasserseitige Beläge bis 50 °C. Im Falle von Kesselsteinablagerungen kann diese Temperaturdifferenz deutlich höher liegen und Risse verursachen.

Um Spannungen in den Kesselbauteilen als Folge von thermischen Längenänderungen gering zu halten, werden möglichst geringe Wandstärken für die Kesselböden und die Rohrplatten verwendet. Das Flammrohr und die Rauchrohre nehmen die Innendruckbelastung auf die Kesselböden mit auf. In den nicht berohrten Bereichen des Mantels (Dampfraum) werden zusätzlich Eck- oder Zuganker eingeschweißt, die die Biegespannungen zwischen Mantel und Boden teilweise aufnehmen. Dies sind spannungstechnisch kritische und schadensanfällige Komponenten. Die Schweißnähte der Anker müssen durchgeschweißt sein und durch die Form der Anker muss ein stetiger Spannungsfluss gewährleistet sein.

Mehr als drei Züge sind bei heutigen Großwasserraumkesselkonstruktionen nicht üblich. Die Großwasserraumkessel zeichnen sich durch einen hohen Wasserinhalt (1 – 30 t) und somit eine hohe Wärmespeicherfähigkeit aus. Durch die Nachverdampfung des unter Sattdampftemperatur stehenden Wassers kann ein kurzzeitig schwankender Dampfverbrauch ausgeglichen werden. Die erforderlichen Wandstärken für den Mantel und die notwendigen Verankerungen der Böden schränken den technisch vertretbaren Bereich des Betriebsdruckes ein (bis ca. 38 bar). Aufgrund der Bauweise (große zusammenhängende Flächen) sind Großwasserraumkessel empfindlich gegen Wärmespannungen beim Hochheizen und Abkühlen. Die Kessel werden daher langsam hochgefahren, um den Temperaturgradienten der Kesselbauteile gering zu halten.

Um den Brennstoffverbrauch weiter zu senken, wird heutzutage in den meisten Fällen ein Economiser (Eco: Speisewasservorwärmer) dem Kessel nachgeschaltet. Im Economiser wird das Kesselspeisewasser erwärmt, bevor es in den Kessel geleitet wird. Der Economiser ist beim Großwasserraumkessel ein separates Bauteil, durch den das aus dem Kessel abgeführte Rauchgas mit Temperaturen von 200 – 300 °C geleitet wird. Es besteht aus einer Rohranordnung, die oft noch mit Rippen versehen ist. Wenn viel kaltes Zusatzwasser nachgespeist wird, schaltet man auch noch einen zweiten Economiser nach, der dieses Wasser vor Eintritt in den Speisewasserbehälter vorwärmt. In diesen Fällen muss allerdings das Kondensieren von Wasserdampf aus dem Rauchgas mit Säurebildung beachtet werden. Die Bauteile müssen aus Edelstahl gefertigt werden oder es muss eine Rauchgastemperaturregelung vorgesehen werden, um eine Mindesttemperatur zu gewährleisten.

Energiezufuhr

Fossile Brennstoffe

Die Kessel wurden bis zur Mitte des 20. Jahrhunderts meistens mit Festbrennstoffen (Kohle, Holz) beheizt. In den 50er und 60er Jahren wurde die Feuerung vieler Kessel wegen der einfacheren Handhabung auf Heizöl umgerüstet. Der preisgünstigste Brennstoff war das schwere Heizöl S, das für die Förderung erwärmt werden muss. Wegen der Emissionen (hoher Schwefelgehalt, NOx und Staubbelastung) sowie dem aufwändigeren Betrieb (Brenner und Kessel müssen regelmäßig gereinigt werden, Verkleben von Zuleitungen bei ausgefallener Begleitbeheizung) wird das Heizöl S kaum noch verwendet. Außerdem sind zusätzliche Maßnahmen erforderlich (Entstickung, Entstaubung), um die aktuellen Emissionsgrenzwerte einzuhalten. Daher wird fast nur noch Heizöl der Sorte EL (extra leicht) eingesetzt. Mit der Verbreitung von Erdgas in den 1960er-Jahren wird das Gas für die Feuerung von Großwasserraumkesseln verwendet, wenn es an der Betriebsstätte verfügbar ist. Der Vorteil der Erdgasfeuerung liegt in der emissionsarmen Verbrennung und es tritt bei korrekter Brennereinstellung praktisch keine Rußbildung auf.

Strom

Ein Großwasserraumkessel kann auch elektrisch beheizt werden. Hierfür werden Heizstäbe verwendet, die meist als Bündel in einem Stutzen des Kesselkörpers eingesetzt werden. Aufgrund der deutlich höheren spezifischen Kosten der Beheizung im Vergleich zur Verwendung fossiler Brennstoffen wird die elektrische Beheizung in der Regel nur bei kleinen Dampfleistungen (weniger als 1 t/h) eingesetzt. Die Investitionskosten und der Platzbedarf sind gering. Es entfallen die Abgasanlage und die Brennstoffzuführung, und der Kessel kann in sterilen Bereichen aufgestellt werden. Zum Einsatz kommen die Kessel in Krankenhäusern und in der Pharmaindustrie (Dampf für die Sterilisation) oder in Labors.

Speisewasser

Das Speisewasser von Großwasserraumkesseln muss aufbereitet werden, um Korrosion und Kesselsteinablagerung zu verhindern. Soweit das eingesetzte Zusatzwasser nicht eine besonders hohe Härte aufweist, reicht es in den meisten Fällen aus, die Härtebildner an einem mit Kochsalz regenerierten Basenaustauscher durch Na-Ionen auszutauschen. Das Speisewasser sollte thermisch entgast werden. Dem Speisewasser muss Konditionierungsmittel (z. B. Natriumphosphat, Natriumsulfit) zugesetzt werden, um den Ausfall von Resthärte zu verhindern, Restsauerstoff chemisch abzubinden und den pH-Wert anzuheben. Das Speisewasser muss ferner entölt werden.

Schiffsdampfkessel

In Dampfschiffen wurden meistens die schottischen Kessel eingesetzt. Dies sind zweizügige Großwasserraumkessel mit einem bis vier Flammrohren und einem Rauchrohrzug. Um die notwendige Dampfleistung bei größeren Schiffen zu erreichen, wurde die Anzahl der Dampfkessel entsprechend erhöht. So hatte die Titanic insgesamt 29 schottische Schiffsdampfkessel.

Lagen die Schiffe im Hafen, wurde bei einer Liegezeit von bis zu 3 Wochen durchgeheizt, das heißt, wenigstens ein Flammrohr, meist der sogenannte „monkey“, also das Flammrohr an der niedrigsten Stelle des Kessels, wurde sparsam weiterbefeuert, um das Kesselwasser gerade bei etwa 100 °C und etwa 1 bar Druck zu halten.

Solange Dampfschiffe keine Entsalzungsanlagen hatten, musste Reservewasser mitgeführt werden, um unvermeidliche Verluste durch Abschlammung, Dampfleckagen oder die Dampfpfeife auszugleichen.

Lokomotivdampfkessel

Ein Dampflokomotivkessel ist eine Bauform des mobilen Landdampfkessels zur Erzeugung von Dampf für den Antrieb von Dampflokomotiven. Lokomotivkessel sind meistens Röhrenkessel. Es sind aber auch andere Bauarten bekannt.

Beschaffenheitsanforderungen

Großwasserraumkessel sind Druckgeräte im Sinne der Druckgeräterichtlinie 2014/68/EU und dürfen nur in Verkehr gebracht werden, wenn der Hersteller durch ein Konformitätsbewertungsverfahren unter Beteiligung einer benannten Stelle nachgewiesen hat, dass er die grundlegenden Sicherheitsanforderungen der Richtlinie eingehalten hat. Der Hersteller bringt das CE-Zeichen an und stellt eine Konformitätserklärung aus. Harmonisierte Produktnormen für Großwasserraumkessel sind:

  • EN 12953-1 bis 14: Großwasserraumkessel
  • EN 14222: Edelstahl-Großwasserraumkessel

Bei Anwendung dieser Norm kann der Hersteller davon ausgehen, dass er die grundlegenden Sicherheitsanforderungen der Richtlinie erfüllt (Vermutungswirkung).

Einzelnachweise

  1. Watt’scher Kofferkessel im Deutschen Museum
  2. Conrad Matschoss: Die Entwicklung der Dampfmaschine. Eine Geschichte der ortsfesten Dampfmaschine und der Lokomobile, der Schiffsmaschine und Lokomotive, Springer 1908, Seite 606 (PDF-Datei)
  3. Meyers Konversationslexikon, Verlag des Bibliographischen Instituts, Leipzig und Wien, Vierte Auflage, 1885–1892, Seite 449: „Dampfkessel (horizontale: Wattscher Kofferkessel, Cylinderkessel, Flammrohrkessel)“

Literaturquellen

  • Joh. Eug. Mayer: Taschenbuch für den modernen Heizer und Kesselwärter, Berlin 1912, Verlag Hermann Schran & Co.
  • R. E. Th. Schlippe: Die Dampfkessel und ihr Betrieb, 4. Auflage. Berlin 1923, Verlag Julius Springer.
  • Wilhelm Leder: Schiffsmaschinenkunde Band I: Schiffsdampfkessel, 1956, Fachbuchverlag Leipzig.
  • Fritz Mayr: Kesselbetriebstechnik, 10. Auflage. Gräfelfing 2009, Resch, ISBN 3-930039-13-3.

Autor: www.NiNa.Az

Veröffentlichungsdatum: 08 Jul 2025 / 06:28

wikipedia, wiki, deutsches, deutschland, buch, bücher, bibliothek artikel lesen, herunterladen kostenlos kostenloser herunterladen, MP3, Video, MP4, 3GP, JPG, JPEG, GIF, PNG, Bild, Musik, Lied, Film, Buch, Spiel, Spiele, Mobiltelefon, Mobil, Telefon, android, ios, apple, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, computer, komputer, Informationen zu Großwasserraumkessel, Was ist Großwasserraumkessel? Was bedeutet Großwasserraumkessel?

Der Grosswasserraumkessel ist ein Dampfkessel und dient der Erzeugung von Wasserdampf oder Heisswasser in Industrieunternehmen und an Bord von Dampfschiffen oder Dampflokomotiven Charakteristisch fur die Kesselbauart ist ein zylindrischer Wasser Dampf Raum mit ebenen oder gekrempten Boden Die Befeuerung erfolgte ursprunglich von aussen Bei aktuellen Konstruktionen erfolgt die Beheizung ausschliesslich von innen uber das Flammrohr und Rauchrohre Im Gegensatz zum Wasserrohrkessel wird das Rauchgas in den Rohren gefuhrt Historische EntwicklungKofferkessel Die ersten Dampfkessel im Uberdruckbereich zum Ende des 18 Jahrhunderts die Dampf mit einem Uberdruck von 0 5 1 bar erzeugten waren genietete der Form wegen so genannte Kofferkessel auch bekannt als Wagenkessel oder nach ihrem Erfinder Watt sche Kessel James Watt hatte 1770 den ersten Kofferkessel konstruiert Wegen ihrer grossen flachen Wande konnen sie nur geringe Dampfdrucke aushalten und wurden bereits ab dem fruhen 19 Jahrhundert durch Hochdruck Kessel mit zylindrischem Querschnitt ersetzt nachdem Oliver Evans 1786 den ersten Walzenkessel fur seine 1784 erdachte Hochdruck Dampfmaschine konstruierte Walzenkessel Walzenkessel Es folgte der Walzenkessel als Urform der spannungsgunstigen Bauform mit zylindrischem Mantel und gewolbten Boden In der Regel wurde der Kessel liegend betrieben Es gab aber auch stehende Ausfuhrungen die in Huttenwerken eingesetzt wurden und mit den abziehenden Gasen aus Flammen und Gluhofen beheizt wurden Der Kessel war eingemauert und wurde von unten befeuert Die Rauchgase wurden um die Aussenwandungen des Kessels geleitet In dem Mauerwerk waren Zuge eingemauert um die Warme des Rauchgases so gut wie moglich zu nutzen Oft waren unterhalb der Kessel 2 getrennte Kanale angelegt worden Der Kessel wurde mit leichtem Gefalle nach hinten aufgestellt damit der gebildete Schlamm nach hinten zum Abschlammventil abgeleitet wird und der Warmeubergang von der Kesselsohle nicht noch weiter behindert wird Der Durchmesser der Walzenkessel betrug bis zu 1 5 m bei einer Lange bis zu 10 m Bei dieser Dimensionierung erreicht man eine Heizflache von 25 m Die flachenspezifische Dampfleistung betragt 10 12 kg Dampf pro m und Stunde so dass die Dampfleistung des Walzenkessels auf 300 kg h begrenzt ist Der Walzenkessel war eine kostengunstige Bauart Der Kesselstein konnte einfach mit dem Kesselsteinhammer gelost werden da keine Einbauten diese Arbeit behindern Die Warmeausnutzung ist sehr ungunstig und der Kessel bedarf einer sehr langen Aufheizzeit und war somit nur fur kontinuierlich arbeitende Betriebe einsetzbar Heute werden Walzenkessel wegen ihrer einfachen und kostengunstigen Bauart noch bei Spielzeug Dampfmaschinen verwendet Mehrfache Walzenkessel Mehrfacher Walzenkessel Der mehrfache Walzenkessel besteht aus dem oben liegenden Hauptkessel oder Oberkessel und darunter liegenden kleineren Kesseln die als Unterkessel bezeichnet werden Die Unterkessel weisen etwa zwei Drittel des Durchmessers des Hauptkessels auf Der Durchmesser des Unterkessels sollte aber 55 cm nicht unterschreiten um den Teil auch befahren und vom Kesselstein reinigen zu konnen Die Teilkessel sind durch Stutzen miteinander verbunden Es gab Anordnungen mit zwei Unterkesseln die nebeneinander angeordnet wurden Es sind je nach Dampfbedarf auch mehrere Teilkessel ubereinander verbunden worden diese wurden dann als Batteriekessel bezeichnet Die Feuerung wurde unter den Oberkessel gelegt wobei Plan oder Schragroste zur Anwendung kamen Die Rauchgase wurden dann um die Unterkessel geleitet Der Schlamm setzte sich in dem unteren Kessel ab Der Walzenkessel mit einem Unterkessel hat eine Heizflache bis 50 m mit 2 Unterkesseln sind es 70 m Batteriekessel erreichten Heizflachen bis 150 m Die Heizflachenbelastung ist vergleichbar mit der des einfachen Walzenkessels Flammrohr Rauchrohrkessel FlammrohrkesselBlick in ein Flammrohr dessen Brenner mit Gas gefeuert wird Als weiterer Entwicklungsschritt entstand 1811 der Flammrohrkessel oder Cornwallkessel Dieser bestand aus einem zylindrischen Mantel und einem Flammrohr das zwischen den beiden Kesselboden eingenietet wurde Die ersten Kessel dieser Bauart konnten mit einem Druck bis 7 bar betrieben werden Die Kesselbauart stellte schon hohere Anforderungen an den Hersteller Die Feuerung erfolgte ausschliesslich mit Festbrennstoffen Ein Planrost ist entweder im Flammrohr eingebaut oder die Feuerung wird in einer vorgelagerten Brennkammer betrieben die als Schragrost ausgefuhrt sein kann Der Warmeubergang erfolgte durch Strahlung im Bereich der Flammenausbildung und Konvektion Diese Kessel waren eingemauert und die Rauchgase wurden durch gemauerte Zwischenwande um die Mantelwand geleitet so dass der Warmeinhalt des Rauchgases so gut wie moglich genutzt werden konnten Eine Weiterentwicklung bildete der Doppelflammrohrkessel auch Lancashirekessel Diese Bauart war in Industriebetrieben weit verbreitet wenn Dampf mit Drucken bis ca 16 bar benotigt wurde Diese Kessel wurden in Kesselanlagen des Bergbaus oft eingesetzt um Dampf fur die Fordermaschinen zu erzeugen oder in Industriebetrieben die Dampfmaschinen fur den Antrieb einer Transmission einsetzten Ein wichtiger Aspekt in der Dimensionierung war der ausreichende Freiraum im Kessel um Kesselstein durch handisches Picken entfernen zu konnen Flammrohrkessel wurden immer mit einem Dampfdom ausgestattet Genietete Dampfkessel wurden bis etwa 1945 gebaut Nachteil der Flammrohrkessel war die nicht optimale Nutzung des Warmeinhalts der Rauchgase da eine Vergrosserung der Heizflache konstruktionsbedingt am Kessel selbst nicht moglich ist Eine optimierte Ausnutzung der Rauchgaswarme war nur durch den Einbau von Nachschaltheizflachen moglich die als Uberhitzer oder Speisewasservorwarmer einsetzbar sind Zur Mitte des 20 Jahrhunderts hatte sich auch die Schweisstechnik und die Gute der Werkstoffe soweit entwickelt dass Schweissverbindungen auch fur hoher belastete Bauteile zuverlassig hergestellt werden konnten Hinzu kommt dass nahtlose Stahlrohre seit Ende des 19 Jahrhunderts Mannesmann zur Verfugung standen Es wurde der Flammrohrrauchrohrkessel entwickelt den folgende Konstruktionsdetails auszeichnen alle Verbindungen sind geschweisst Der Kessel hat ein Flammrohr und die Rauchgase werden mehrfach in Langsrichtung des Kessels umgeleitet Der Kessel weist mehrere Zuge auf 2 5 Rauchgaszuge die durch am hinteren und vorderen Boden verbunden sind Uber den Flammrohren sind die sogenannten Rauchrohre fur die weitere Nutzung der Rauchgaswarme eingezogen die wesentlich kleiner im Durchmesser sind als die Flammrohre Der konvektive Warmeubergang in einer Vielzahl von Rauchrohren ist bei geringerem Durchmesser wegen der grosseren Reynolds Zahl wesentlich besser als bei einem Rohr mit grossem Durchmesser Ausserdem wird bei Rohren mit geringem Durchmesser eine grossere Heizflache im Verhaltnis zur Gesamtquerschnittsflache der Rohre erreicht Der Flammrohr Rauchrohr Kessel wird nur noch von innen beheizt Es entfallt das Mauerwerk und die Wandungen sind nach aussen warmegedammt ausgefuhrt Blick in einen genieteten Flamm rohr kessel Baujahr 1945 Doppel flamm rohr kessel der Zeche Carl Kesselhaus abgerissen Historischer Doppel flamm rohr kessel Moderner Gross wasser raum kessel mit BrennerKonstruktive DetailsDreizug Flammrohrrauchrohrkessel Werkstoffspannungen an den Kesselbauteilen treten in erster Linie durch den Dampfdruck auf Der Mantel wird durch den Innendruck belastet wahrend das Flammrohr einer Druckbelastung von aussen ausgesetzt ist Daher muss das Flammrohr gegen Einbeulen ausgelegt werden Flammrohrrauchrohrkessel mit niedriger Belastung haben oft ein glattes Flammrohr und ebene Boden Grossraumwasserkessel mit hoheren Betriebsdrucken sind mit gewellten Flammrohren hohere Festigkeit gegenuber Einbeulen und ebenen gekrempten Boden ausgefuhrt Der Vorteil des gekrempten Bodens ist die Lage der Schweissnaht im zylindrischen Bereich vor der Krempe so dass die Naht nur durch Zugspannungen belastet wird Bei ebenen Scheibenboden treten zusatzlich ungunstige Biegespannungen auf Daneben treten Spannungen durch Temperaturunterschiede durch die Beheizung auf Wahrend die unbeheizten Flachen Kesselmantel etwa Sattdampftemperatur aufweisen liegt die Temperatur an den Heizflachen hoher Der Temperaturunterschied betragt beim Kessel ohne wasserseitige Belage bis 50 C Im Falle von Kesselsteinablagerungen kann diese Temperaturdifferenz deutlich hoher liegen und Risse verursachen Um Spannungen in den Kesselbauteilen als Folge von thermischen Langenanderungen gering zu halten werden moglichst geringe Wandstarken fur die Kesselboden und die Rohrplatten verwendet Das Flammrohr und die Rauchrohre nehmen die Innendruckbelastung auf die Kesselboden mit auf In den nicht berohrten Bereichen des Mantels Dampfraum werden zusatzlich Eck oder Zuganker eingeschweisst die die Biegespannungen zwischen Mantel und Boden teilweise aufnehmen Dies sind spannungstechnisch kritische und schadensanfallige Komponenten Die Schweissnahte der Anker mussen durchgeschweisst sein und durch die Form der Anker muss ein stetiger Spannungsfluss gewahrleistet sein Mehr als drei Zuge sind bei heutigen Grosswasserraumkesselkonstruktionen nicht ublich Die Grosswasserraumkessel zeichnen sich durch einen hohen Wasserinhalt 1 30 t und somit eine hohe Warmespeicherfahigkeit aus Durch die Nachverdampfung des unter Sattdampftemperatur stehenden Wassers kann ein kurzzeitig schwankender Dampfverbrauch ausgeglichen werden Die erforderlichen Wandstarken fur den Mantel und die notwendigen Verankerungen der Boden schranken den technisch vertretbaren Bereich des Betriebsdruckes ein bis ca 38 bar Aufgrund der Bauweise grosse zusammenhangende Flachen sind Grosswasserraumkessel empfindlich gegen Warmespannungen beim Hochheizen und Abkuhlen Die Kessel werden daher langsam hochgefahren um den Temperaturgradienten der Kesselbauteile gering zu halten Um den Brennstoffverbrauch weiter zu senken wird heutzutage in den meisten Fallen ein Economiser Eco Speisewasservorwarmer dem Kessel nachgeschaltet Im Economiser wird das Kesselspeisewasser erwarmt bevor es in den Kessel geleitet wird Der Economiser ist beim Grosswasserraumkessel ein separates Bauteil durch den das aus dem Kessel abgefuhrte Rauchgas mit Temperaturen von 200 300 C geleitet wird Es besteht aus einer Rohranordnung die oft noch mit Rippen versehen ist Wenn viel kaltes Zusatzwasser nachgespeist wird schaltet man auch noch einen zweiten Economiser nach der dieses Wasser vor Eintritt in den Speisewasserbehalter vorwarmt In diesen Fallen muss allerdings das Kondensieren von Wasserdampf aus dem Rauchgas mit Saurebildung beachtet werden Die Bauteile mussen aus Edelstahl gefertigt werden oder es muss eine Rauchgastemperaturregelung vorgesehen werden um eine Mindesttemperatur zu gewahrleisten EnergiezufuhrFossile Brennstoffe Brenner eines Flammrohrrauchrohrkessels Die Kessel wurden bis zur Mitte des 20 Jahrhunderts meistens mit Festbrennstoffen Kohle Holz beheizt In den 50er und 60er Jahren wurde die Feuerung vieler Kessel wegen der einfacheren Handhabung auf Heizol umgerustet Der preisgunstigste Brennstoff war das schwere Heizol S das fur die Forderung erwarmt werden muss Wegen der Emissionen hoher Schwefelgehalt NOx und Staubbelastung sowie dem aufwandigeren Betrieb Brenner und Kessel mussen regelmassig gereinigt werden Verkleben von Zuleitungen bei ausgefallener Begleitbeheizung wird das Heizol S kaum noch verwendet Ausserdem sind zusatzliche Massnahmen erforderlich Entstickung Entstaubung um die aktuellen Emissionsgrenzwerte einzuhalten Daher wird fast nur noch Heizol der Sorte EL extra leicht eingesetzt Mit der Verbreitung von Erdgas in den 1960er Jahren wird das Gas fur die Feuerung von Grosswasserraumkesseln verwendet wenn es an der Betriebsstatte verfugbar ist Der Vorteil der Erdgasfeuerung liegt in der emissionsarmen Verbrennung und es tritt bei korrekter Brennereinstellung praktisch keine Russbildung auf Strom Ein Grosswasserraumkessel kann auch elektrisch beheizt werden Hierfur werden Heizstabe verwendet die meist als Bundel in einem Stutzen des Kesselkorpers eingesetzt werden Aufgrund der deutlich hoheren spezifischen Kosten der Beheizung im Vergleich zur Verwendung fossiler Brennstoffen wird die elektrische Beheizung in der Regel nur bei kleinen Dampfleistungen weniger als 1 t h eingesetzt Die Investitionskosten und der Platzbedarf sind gering Es entfallen die Abgasanlage und die Brennstoffzufuhrung und der Kessel kann in sterilen Bereichen aufgestellt werden Zum Einsatz kommen die Kessel in Krankenhausern und in der Pharmaindustrie Dampf fur die Sterilisation oder in Labors SpeisewasserDas Speisewasser von Grosswasserraumkesseln muss aufbereitet werden um Korrosion und Kesselsteinablagerung zu verhindern Soweit das eingesetzte Zusatzwasser nicht eine besonders hohe Harte aufweist reicht es in den meisten Fallen aus die Hartebildner an einem mit Kochsalz regenerierten Basenaustauscher durch Na Ionen auszutauschen Das Speisewasser sollte thermisch entgast werden Dem Speisewasser muss Konditionierungsmittel z B Natriumphosphat Natriumsulfit zugesetzt werden um den Ausfall von Restharte zu verhindern Restsauerstoff chemisch abzubinden und den pH Wert anzuheben Das Speisewasser muss ferner entolt werden SchiffsdampfkesselIn Dampfschiffen wurden meistens die schottischen Kessel eingesetzt Dies sind zweizugige Grosswasserraumkessel mit einem bis vier Flammrohren und einem Rauchrohrzug Um die notwendige Dampfleistung bei grosseren Schiffen zu erreichen wurde die Anzahl der Dampfkessel entsprechend erhoht So hatte die Titanic insgesamt 29 schottische Schiffsdampfkessel Lagen die Schiffe im Hafen wurde bei einer Liegezeit von bis zu 3 Wochen durchgeheizt das heisst wenigstens ein Flammrohr meist der sogenannte monkey also das Flammrohr an der niedrigsten Stelle des Kessels wurde sparsam weiterbefeuert um das Kesselwasser gerade bei etwa 100 C und etwa 1 bar Druck zu halten Solange Dampfschiffe keine Entsalzungsanlagen hatten musste Reservewasser mitgefuhrt werden um unvermeidliche Verluste durch Abschlammung Dampfleckagen oder die Dampfpfeife auszugleichen LokomotivdampfkesselEin Dampflokomotivkessel ist eine Bauform des mobilen Landdampfkessels zur Erzeugung von Dampf fur den Antrieb von Dampflokomotiven Lokomotivkessel sind meistens Rohrenkessel Es sind aber auch andere Bauarten bekannt Seitliche Ansicht eines Niederdruckdampfkessels PS 1 bar Hersteller Loos zu sehen sind Wasserstandsglas Leitfahigkeitssonde und Absalzventil BeschaffenheitsanforderungenGrosswasserraumkessel sind Druckgerate im Sinne der Druckgeraterichtlinie 2014 68 EU und durfen nur in Verkehr gebracht werden wenn der Hersteller durch ein Konformitatsbewertungsverfahren unter Beteiligung einer benannten Stelle nachgewiesen hat dass er die grundlegenden Sicherheitsanforderungen der Richtlinie eingehalten hat Der Hersteller bringt das CE Zeichen an und stellt eine Konformitatserklarung aus Harmonisierte Produktnormen fur Grosswasserraumkessel sind EN 12953 1 bis 14 Grosswasserraumkessel EN 14222 Edelstahl Grosswasserraumkessel Bei Anwendung dieser Norm kann der Hersteller davon ausgehen dass er die grundlegenden Sicherheitsanforderungen der Richtlinie erfullt Vermutungswirkung EinzelnachweiseWatt scher Kofferkessel im Deutschen Museum Conrad Matschoss Die Entwicklung der Dampfmaschine Eine Geschichte der ortsfesten Dampfmaschine und der Lokomobile der Schiffsmaschine und Lokomotive Springer 1908 Seite 606 PDF Datei Meyers Konversationslexikon Verlag des Bibliographischen Instituts Leipzig und Wien Vierte Auflage 1885 1892 Seite 449 Dampfkessel horizontale Wattscher Kofferkessel Cylinderkessel Flammrohrkessel LiteraturquellenJoh Eug Mayer Taschenbuch fur den modernen Heizer und Kesselwarter Berlin 1912 Verlag Hermann Schran amp Co R E Th Schlippe Die Dampfkessel und ihr Betrieb 4 Auflage Berlin 1923 Verlag Julius Springer Wilhelm Leder Schiffsmaschinenkunde Band I Schiffsdampfkessel 1956 Fachbuchverlag Leipzig Fritz Mayr Kesselbetriebstechnik 10 Auflage Grafelfing 2009 Resch ISBN 3 930039 13 3

Neueste Artikel
  • Juni 22, 2025

    Solidaritätslied

  • Juni 21, 2025

    Solidarität

  • Juli 05, 2025

    Solarstraßenbeleuchtung

  • Juli 04, 2025

    Sojaölmethylester

  • Juni 21, 2025

    Sojaöl

www.NiNa.Az - Studio

    Kontaktieren Sie uns
    Sprachen
    Kontaktieren Sie uns
    DMCA Sitemap
    © 2019 nina.az - Alle Rechte vorbehalten.
    Copyright: Dadash Mammadov
    Eine kostenlose Website, die Daten- und Dateiaustausch aus der ganzen Welt ermöglicht.
    Spi.