Azərbaycan  AzərbaycanDeutschland  DeutschlandLietuva  LietuvaMalta  Maltaශ්‍රී ලංකාව  ශ්‍රී ලංකාවTürkmenistan  TürkmenistanTürkiyə  TürkiyəУкраина  Украина
Unterstützung
www.datawiki.de-de.nina.az
  • Heim

Eine Hauptträgheitsachse oft abgekürzt auch Hauptachse eines Körpers ist eine Rotationsachse um die der Körper fortgeset

Hauptträgheitsachse

  • Startseite
  • Hauptträgheitsachse
Hauptträgheitsachse
www.datawiki.de-de.nina.azhttps://www.datawiki.de-de.nina.az

Eine Hauptträgheitsachse, oft abgekürzt auch Hauptachse, eines Körpers ist eine Rotationsachse, um die der Körper fortgesetzt rotieren kann, ohne dass eine dynamische Unwucht auftritt. Die Richtung der Achse bleibt daher konstant, ohne dass ein äußeres Drehmoment einwirken muss.

Durch jeden Punkt innerhalb oder außerhalb des Körpers gehen immer mindestens drei Hauptträgheitsachsen. Meistens wird der Begriff jedoch nur für die Hauptträgheitsachsen verwendet, die durch den Schwerpunkt des Körpers verlaufen.

Bei Drehachsen, die nicht durch den Schwerpunkt gehen, tritt unabhängig von der eventuellen dynamischen Unwucht immer auch die statische Unwucht auf. Diese äußert sich nicht durch ein Drehmoment auf die Achse, sondern durch eine Kraft, die nicht im Sinne einer Richtungsänderung wirkt, sondern im Sinne einer Parallelverschiebung der Achse.

Zusammenhang mit dem Hauptträgheitsmoment

Das zu einer Hauptträgheitsachse gehörige Trägheitsmoment wird als ein Hauptträgheitsmoment des Körpers bezeichnet.

Sind für einen Körper die drei Hauptträgheitsmomente für einen bestimmten Punkt gleich groß, wie z. B. für den Mittelpunkt einer Kugel oder eines Würfels, dann ist jede andere Achse durch diesen Punkt ebenfalls eine Hauptträgheitsachse und hat dasselbe Hauptträgheitsmoment.

Bei Körpern mit geringerer Rotationssymmetrie sind im Allgemeinen höchstens zwei Hauptträgheitsmomente gleich.

Hauptträgheitsachsen mit unterschiedlichem Trägheitsmoment stehen senkrecht aufeinander. Sind alle drei Hauptträgheitsmomente verschieden, dann gibt es außer den drei betreffenden, auf einander senkrecht stehenden Hauptträgheitsachsen keine weiteren.

Für Drehungen um Achsen, die durch den betreffenden Punkt verlaufen, ist immer eins der drei Hauptträgheitsmomente das größtmögliche Trägheitsmoment des Körpers, ein anderes das kleinstmögliche.

Nähere Beschreibung und Beispiele

Bei der freien Rotation eines Körpers (d. h. ohne weiteres Einwirken einer Kraft oder eines Drehmoments) verläuft die Rotationsachse immer durch den Schwerpunkt. Wenn sie keine Hauptträgheitsachse ist, dann ist die Drehbewegung ein Taumeln, bei dem sich die Richtung der Achse fortwährend sowohl im Raum als auch in Bezug zum Körper ändert. Das ist z. B. leicht anhand von Quadern mit unterschiedlichen Seitenlängen zu demonstrieren.

Hingegen ist freie Rotation um eine Hauptträgheitsachse im Idealfall ein stabiler Bewegungszustand. Wenn nicht alle drei Hauptträgheitsmomente gleich groß sind, kann die Reaktion auf eine äußere Störung aber sehr verschieden ausfallen:

  • ist die Störung eine kleine Ablenkung der Drehachse aus der Richtung der Hauptträgheitsachse mit dem größten oder kleinsten der drei Hauptträgheitsmomente, dann bewegt sich die Drehachse um die betreffende Hauptträgheitsachse, bleibt aber immer in deren Nähe. Das sieht man z. B. beim konstanten „Eiern“ eines geworfenen Footballs, der sich schnell, aber nicht ganz genau, um die Längsachse dreht, die hier die Achse mit dem kleinsten Trägheitsmoment ist. Die Drehung um die Achse mit dem mittleren Trägheitsmoment ist instabil.
  • besteht die Störung aus einem ständigen Entzug von Rotationsenergie und/oder zunehmendem Drehimpuls, dann ist nur die Rotation um die Achse mit dem größten Hauptträgheitsmoment stabil, denn sie ermöglicht bei gegebener Rotationsenergie den größten Drehimpuls. Das ist z. B. an Steinen zu sehen, die einen Abhang hinunter rollen und sich scheinbar „von alleine“ aufrichten, auch wenn sie eine eher flache Form haben.

Soll die Rotation um eine feste Drehachse durch den Schwerpunkt erfolgen, die keine Hauptträgheitsachse ist, so muss die Richtung der Achse durch eine Lagerung konstant gehalten werden, die ein Drehmoment auf die Achse ausübt. Die erforderlichen Lagerkräfte steigen mit dem Quadrat der Drehzahl:

FLager∼n2{\displaystyle F_{\text{Lager}}\sim n^{2}}

Im Alltag ist dies etwa bei nicht ausgewuchteten Autorädern oder ungleichmäßig befüllten Wäscheschleudern gut zu beobachten. Beim Auswuchten wird die räumliche Massenverteilung des Körpers so verändert, dass die gewünschte Drehachse zu einer Hauptträgheitsachse gemacht wird.

Erklärung

Das ganze Verhalten erklärt sich daraus, dass nur bei Drehungen eines Körpers um eine seiner Hauptträgheitsachsen der Drehimpuls parallel zur Drehachse ist und beide ohne äußere Kräfte ihre Richtung beibehalten.

Bei Drehungen um andere Achsen bilden Drehimpuls und Drehachse einen Winkel. Soll dann die Achse fest bleiben, so muss der Drehimpuls mit dem Körper rotieren, also seine Richtung ändern, was nach dem Drallsatz nur durch ein äußeres Drehmoment bewirkt werden kann. Wirken aber keine äußeren Drehmomente, dann bleibt der Drehimpuls nach Richtung und Betrag konstant, so dass nun die Rotationsachse um ihn herum bewegt wird.

Man findet die Hauptträgheitsachsen eines Körpers als die Hauptachsen seines Trägheitstensors, Berechnung siehe dort.

Das Taumeln der Drehachse bei Rotation eines freien Körpers um eine Achse, die nicht Hauptträgheitsachse ist, kann man auch im mitrotierenden Bezugssystem begründen: Darin erzeugen alle rotierenden Teile des Körpers Zentrifugalkräfte, die zusammengenommen ein Drehmoment um den Schwerpunkt bilden können. Wenn dies ungleich Null ist, lässt es die Achse kippen. Hingegen addieren sich bei Rotation um eine Hauptträgheitsachse die Momente der Zentrifugalkräfte zu Null. Dies zeigt sich darin, dass die entsprechenden Deviationsmomente (Nebendiagonalen im Trägheitstensor) Null sind.

Literatur

  • Holzmann/Meyer/Schumpich – Technische Mechanik Band 2, B.G. Teubner Stuttgart
  • Technische Mechanik, Martin Mayr, Hanser-Verlag, ISBN 3-446-22608-7
  • Klassische Mechanik, Herbert Goldstein, Charles P. Poole, John L. Safko, Wiley-VCH Weinheim 2006
  • Technische Mechanik 2. Elastostatik, Christian Spura, Springer Verlag, 2019, ISBN 978-3-658-19979-1

Einzelnachweise

  1. Carsten Timm: Theoretische Mechanik, Kapitel 9.3.1 Rotation um freie Achsen, 22. Juli 2021, Technische Universität Dresden, Institut für Theoretische Physik, abgerufen am 11. Januar 2022
  2. Brandt, Dahmen: Mechanik: Eine Einführung in Experiment und Theorie. 3. Auflage. Springer, 1996, ISBN 978-3-540-59319-5, S. 174 (eingeschränkte Vorschau in der Google-Buchsuche). 

Autor: www.NiNa.Az

Veröffentlichungsdatum: 28 Jun 2025 / 03:03

wikipedia, wiki, deutsches, deutschland, buch, bücher, bibliothek artikel lesen, herunterladen kostenlos kostenloser herunterladen, MP3, Video, MP4, 3GP, JPG, JPEG, GIF, PNG, Bild, Musik, Lied, Film, Buch, Spiel, Spiele, Mobiltelefon, Mobil, Telefon, android, ios, apple, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, computer, komputer, Informationen zu Hauptträgheitsachse, Was ist Hauptträgheitsachse? Was bedeutet Hauptträgheitsachse?

Eine Haupttragheitsachse oft abgekurzt auch Hauptachse eines Korpers ist eine Rotationsachse um die der Korper fortgesetzt rotieren kann ohne dass eine dynamische Unwucht auftritt Die Richtung der Achse bleibt daher konstant ohne dass ein ausseres Drehmoment einwirken muss Durch jeden Punkt innerhalb oder ausserhalb des Korpers gehen immer mindestens drei Haupttragheitsachsen Meistens wird der Begriff jedoch nur fur die Haupttragheitsachsen verwendet die durch den Schwerpunkt des Korpers verlaufen Bei Drehachsen die nicht durch den Schwerpunkt gehen tritt unabhangig von der eventuellen dynamischen Unwucht immer auch die statische Unwucht auf Diese aussert sich nicht durch ein Drehmoment auf die Achse sondern durch eine Kraft die nicht im Sinne einer Richtungsanderung wirkt sondern im Sinne einer Parallelverschiebung der Achse Zusammenhang mit dem HaupttragheitsmomentDas zu einer Haupttragheitsachse gehorige Tragheitsmoment wird als ein Haupttragheitsmoment des Korpers bezeichnet Sind fur einen Korper die drei Haupttragheitsmomente fur einen bestimmten Punkt gleich gross wie z B fur den Mittelpunkt einer Kugel oder eines Wurfels dann ist jede andere Achse durch diesen Punkt ebenfalls eine Haupttragheitsachse und hat dasselbe Haupttragheitsmoment Bei Korpern mit geringerer Rotationssymmetrie sind im Allgemeinen hochstens zwei Haupttragheitsmomente gleich Haupttragheitsachsen mit unterschiedlichem Tragheitsmoment stehen senkrecht aufeinander Sind alle drei Haupttragheitsmomente verschieden dann gibt es ausser den drei betreffenden auf einander senkrecht stehenden Haupttragheitsachsen keine weiteren Fur Drehungen um Achsen die durch den betreffenden Punkt verlaufen ist immer eins der drei Haupttragheitsmomente das grosstmogliche Tragheitsmoment des Korpers ein anderes das kleinstmogliche Nahere Beschreibung und BeispieleBei der freien Rotation eines Korpers d h ohne weiteres Einwirken einer Kraft oder eines Drehmoments verlauft die Rotationsachse immer durch den Schwerpunkt Wenn sie keine Haupttragheitsachse ist dann ist die Drehbewegung ein Taumeln bei dem sich die Richtung der Achse fortwahrend sowohl im Raum als auch in Bezug zum Korper andert Das ist z B leicht anhand von Quadern mit unterschiedlichen Seitenlangen zu demonstrieren Hingegen ist freie Rotation um eine Haupttragheitsachse im Idealfall ein stabiler Bewegungszustand Wenn nicht alle drei Haupttragheitsmomente gleich gross sind kann die Reaktion auf eine aussere Storung aber sehr verschieden ausfallen ist die Storung eine kleine Ablenkung der Drehachse aus der Richtung der Haupttragheitsachse mit dem grossten oder kleinsten der drei Haupttragheitsmomente dann bewegt sich die Drehachse um die betreffende Haupttragheitsachse bleibt aber immer in deren Nahe Das sieht man z B beim konstanten Eiern eines geworfenen Footballs der sich schnell aber nicht ganz genau um die Langsachse dreht die hier die Achse mit dem kleinsten Tragheitsmoment ist Die Drehung um die Achse mit dem mittleren Tragheitsmoment ist instabil besteht die Storung aus einem standigen Entzug von Rotationsenergie und oder zunehmendem Drehimpuls dann ist nur die Rotation um die Achse mit dem grossten Haupttragheitsmoment stabil denn sie ermoglicht bei gegebener Rotationsenergie den grossten Drehimpuls Das ist z B an Steinen zu sehen die einen Abhang hinunter rollen und sich scheinbar von alleine aufrichten auch wenn sie eine eher flache Form haben Soll die Rotation um eine feste Drehachse durch den Schwerpunkt erfolgen die keine Haupttragheitsachse ist so muss die Richtung der Achse durch eine Lagerung konstant gehalten werden die ein Drehmoment auf die Achse ausubt Die erforderlichen Lagerkrafte steigen mit dem Quadrat der Drehzahl FLager n2 displaystyle F text Lager sim n 2 Im Alltag ist dies etwa bei nicht ausgewuchteten Autoradern oder ungleichmassig befullten Wascheschleudern gut zu beobachten Beim Auswuchten wird die raumliche Massenverteilung des Korpers so verandert dass die gewunschte Drehachse zu einer Haupttragheitsachse gemacht wird ErklarungDas ganze Verhalten erklart sich daraus dass nur bei Drehungen eines Korpers um eine seiner Haupttragheitsachsen der Drehimpuls parallel zur Drehachse ist und beide ohne aussere Krafte ihre Richtung beibehalten Bei Drehungen um andere Achsen bilden Drehimpuls und Drehachse einen Winkel Soll dann die Achse fest bleiben so muss der Drehimpuls mit dem Korper rotieren also seine Richtung andern was nach dem Drallsatz nur durch ein ausseres Drehmoment bewirkt werden kann Wirken aber keine ausseren Drehmomente dann bleibt der Drehimpuls nach Richtung und Betrag konstant so dass nun die Rotationsachse um ihn herum bewegt wird Man findet die Haupttragheitsachsen eines Korpers als die Hauptachsen seines Tragheitstensors Berechnung siehe dort Das Taumeln der Drehachse bei Rotation eines freien Korpers um eine Achse die nicht Haupttragheitsachse ist kann man auch im mitrotierenden Bezugssystem begrunden Darin erzeugen alle rotierenden Teile des Korpers Zentrifugalkrafte die zusammengenommen ein Drehmoment um den Schwerpunkt bilden konnen Wenn dies ungleich Null ist lasst es die Achse kippen Hingegen addieren sich bei Rotation um eine Haupttragheitsachse die Momente der Zentrifugalkrafte zu Null Dies zeigt sich darin dass die entsprechenden Deviationsmomente Nebendiagonalen im Tragheitstensor Null sind LiteraturHolzmann Meyer Schumpich Technische Mechanik Band 2 B G Teubner Stuttgart Technische Mechanik Martin Mayr Hanser Verlag ISBN 3 446 22608 7 Klassische Mechanik Herbert Goldstein Charles P Poole John L Safko Wiley VCH Weinheim 2006 Technische Mechanik 2 Elastostatik Christian Spura Springer Verlag 2019 ISBN 978 3 658 19979 1EinzelnachweiseCarsten Timm Theoretische Mechanik Kapitel 9 3 1 Rotation um freie Achsen 22 Juli 2021 Technische Universitat Dresden Institut fur Theoretische Physik abgerufen am 11 Januar 2022 Brandt Dahmen Mechanik Eine Einfuhrung in Experiment und Theorie 3 Auflage Springer 1996 ISBN 978 3 540 59319 5 S 174 eingeschrankte Vorschau in der Google Buchsuche

Neueste Artikel
  • Juni 23, 2025

    Wärmefluss

  • Juni 27, 2025

    Wärmeeindringkoeffizient

  • Juni 24, 2025

    Wärmeenergie

  • Juni 25, 2025

    Wärmedämmverbundsystem

  • Juni 24, 2025

    Wärmedämmung

www.NiNa.Az - Studio

    Kontaktieren Sie uns
    Sprachen
    Kontaktieren Sie uns
    DMCA Sitemap
    © 2019 nina.az - Alle Rechte vorbehalten.
    Copyright: Dadash Mammadov
    Eine kostenlose Website, die Daten- und Dateiaustausch aus der ganzen Welt ermöglicht.
    Spi.