Dieser Artikel behandelt das in Deutschland entwickelte System Zur allgemeinen Funktionsweise und möglichen technischen
Linienförmige Zugbeeinflussung

Die Linienförmige Zugbeeinflussung (LZB), auch Linienzugbeeinflussung, ist ein System der Eisenbahn, das verschiedene Funktionen im Bereich der Sicherung von Zugfahrten und der Zugbeeinflussung übernimmt. Neben der Übermittlung von Fahraufträgen, Höchstgeschwindigkeit und verbleibendem Bremsweg auf eine Anzeige im Führerstand überwacht das System das Fahrverhalten der Züge und kann durch Eingriffe in die Fahrzeugsteuerung die Fahrt der Züge beeinflussen.
Linienförmig bedeutet dabei, dass der Informationsaustausch zwischen Strecken- und Fahrzeugeinrichtung während der gesamten Fahrt und auch während Betriebs- und Verkehrshalten dauernd und zusätzlich in beiden Richtungen besteht. Einige Bauformen der LZB ermöglichen die vollautomatische Steuerung der Fahr- und Bremsvorgänge von Zügen. Die linienförmige Zugbeeinflussung verwendet eine induktive Datenübertragung zwischen Fahrzeug und Fahrweg mittels eines im Gleis verlegten Antennenkabels, des sogenannten Linienleiters. LZB wird in Deutschland, Österreich und Spanien sowie bei einigen U-Bahnen in anderen Ländern eingesetzt.
Im Jahr 2014 betrieb DB Netz (heute DB InfraGO) 2465 Kilometer zweigleisige Strecken mit LZB, die bis 2030 auf das Nachfolgersystem ETCS umgestellt werden sollten. Ende 2021 waren insgesamt 2609 km von 33 288 km im Netz der Deutschen Bahn mit LZB ausgerüstet.
Hintergrund der Entwicklung
Im klassischen Eisenbahnbetrieb werden die Zugfahrten durch ortsfeste Signale geführt. Ein Hauptsignal zeigt dabei an, ob und ggf. mit welcher Geschwindigkeit der Gleisabschnitt bis zum nächsten Hauptsignal befahren werden darf (vgl. Sicherung von Zugfahrten). Die Stellung eines Hauptsignals wird wegen der langen Bremswege von Zügen durch Vorsignale oder das vorherige Hauptsignal angekündigt. Fährt ein Zug an einem Vor- oder Hauptsignal in der Stellung „Halt erwarten“ vorbei, muss der Triebfahrzeugführer den Zug so weit abbremsen, dass er vor dem folgenden Hauptsignal anhalten kann.
Bei steigenden Geschwindigkeiten der Züge ergeben sich daraus zwei Probleme: Zum einen sinkt die Zeit, in der ein Triebfahrzeugführer den Signalbegriff eines ortsfesten Signals wahrnehmen kann, wenn er darauf zufährt. Insbesondere bei schlechten Sichtverhältnissen wie Nebel kann die Zeit für eine sichere Wahrnehmung zu kurz werden. Zum anderen steigt der notwendige Vorsignalabstand durch die längeren Bremswege mit dem Quadrat der Geschwindigkeit. Da aber auch für langsame Züge bereits beim Passieren des Vorsignals „Fahrt erwarten“ gezeigt werden soll (andernfalls müsste der Zug bremsen), erhöht sich für die langsamen Züge die Vorbelegungszeit der Abschnitte, was die Leistungsfähigkeit der Strecke reduziert.
In Deutschland sollte der Regelvorsignalabstand von 1000 Metern nicht verändert werden. Um eine Bremsung bis zum Stillstand innerhalb von 1000 m zu gewährleisten, ist selbst bei guter Bremsausrüstung des Zuges (Magnetschienenbremse) die zulässige Höchstgeschwindigkeit auf 160 km/h begrenzt. Fahrten mit mehr als 160 km/h werden deshalb in Deutschland durch eine kontinuierliche Zugbeeinflussung geführt, wobei der Begriff Führung eine kontinuierliche Führerraumsignalisierung beinhaltet (§ 15 Abs. 3 EBO, § 40 Abs. 2 EBO).
Einsatzgebiete
Die LZB wurde für den Hochgeschwindigkeitsverkehr entwickelt, wird aber aufgrund der dichteren möglichen Zugfolge gegenüber älteren Systemen auch auf Strecken von S-/U-Bahnen und bei Güter- oder Mischverkehr im Rahmen des CIR-ELKE-Projektes eingesetzt. Die Hauptvorteile der LZB gegenüber den älteren, nur punktförmig übertragenden Systemen ist die Möglichkeit, extrem kurze Blockabschnitte zu verwenden und den Bremsweg der Züge abhängig von deren Geschwindigkeit und Bremsverhalten zu überwachen.
Grundlegende Funktionsweise
Bei der LZB übernimmt eine Streckenzentrale (Zentralrechner) die Überwachung der Zugfahrt. Die Streckenzentrale steht über einen im Gleis verlegten Linienleiter immer mit den Fahrzeugen in Verbindung. Über diese Verbindung melden die Fahrzeuge ihre Position und Geschwindigkeit an die Streckenzentrale. Diese berechnet für jeden Zug individuelle Führungsgrößen und sendet diese an die Fahrzeuge. Im Fahrzeug wird die Einhaltung der Führungsgrößen überwacht (genauer siehe Funktionsweise).
Durch ein LZB-Gerät im Führerstand werden dem Triebfahrzeugführer folgende Informationen dargestellt:
- Soll-Geschwindigkeit (momentan gültige Höchstgeschwindigkeit)
- Zielgeschwindigkeit (Höchstgeschwindigkeit am nächsten Geschwindigkeitswechsel)
- Zielentfernung (Entfernung bis zum nächsten Geschwindigkeitswechsel)
Die Sollgeschwindigkeit berücksichtigt dabei bereits eine ggf. notwendige Bremsung bei Annäherung an den Zielpunkt, sie fällt also bei Annäherung kontinuierlich ab, bis sie schließlich am Zielpunkt mit der Zielgeschwindigkeit identisch ist. Ein Halt zeigendes Signal ist dabei ein Zielpunkt mit der Zielgeschwindigkeit null.
Der nächste Zielpunkt wird – je nach genauer Ausführung – bis zu einer Entfernung von 38 000 Metern dargestellt. Wird bis dorthin keine Restriktion gefunden, entspricht die Zielgeschwindigkeit der zulässigen Streckengeschwindigkeit, fallweise auch der zulässigen Geschwindigkeit der Fahrzeuge im Zug. Dem Triebfahrzeugführer wird also mit diesen Größen die Befahrbarkeit der folgenden Abschnitte ggf. mit Geschwindigkeitsbeschränkung dargestellt. In konventionellen Signalsystemen wären diese Angaben in den Begriffen mehrerer Vor- und Hauptsignale kodiert.
Bei der Entwicklung des europäischen Zugsicherungssystems European Train Control System (ETCS) hat man dieses Grundkonzept wahrscheinlich weitgehend von der LZB übernommen, siehe dazu Full Supervision, bzw. Darstellung überwachter Geschwindigkeiten.
In Verbindung mit der Automatischen Fahr- und Bremssteuerung (AFB) wäre auf diese Weise eine fast vollautomatische Steuerung des Zuges möglich. Lediglich die Bremsungen für das Halten an Bahnsteigen müssten vom Triebfahrzeugführer noch manuell durchgeführt werden. Allerdings orientiert sich die AFB stets an der maximal möglichen Geschwindigkeit und versucht diese zu erreichen bzw. zu halten. So würde es z. B. häufig vorkommen, dass die AFB trotz Zufahrt auf ein haltzeigendes Signal noch beschleunigt und dann kurz vor dem Signal stark abbremst. Ein solcher Fahrstil ist jedoch weder komfortabel noch energieeffizient. Daher wird nur in bestimmten Situationen von der vollautomatischen Steuerung durch LZB und AFB Gebrauch gemacht, auch wenn die LZB-Bremskurven bereits deutlich flacher verlaufen als die, die bei 160 km/h von der punktförmigen Zugbeeinflussung angesetzt werden.
Bremskurvenberechnung
Die der Berechnung von Bremskurven zu Grunde zu legende Bremsverzögerung wird anhand der vom Triebfahrzeugführer am Fahrzeuggerät angegebenen zulässigen Geschwindigkeit und Bremshundertsteln ausgewählt, ferner wird von der Streckenzentrale eine Gefällestufe übermittelt. Anhand dieser Werte wählt das Fahrzeuggerät die den Bremskurven zu Grunde zu legende Verzögerung aus Tabellen aus, die auf dem Fahrzeug hinterlegt sind. Die Bremstafeln beschreiben den zulässigen Bremsweg in Abhängigkeit von Bremshundertsteln, Geschwindigkeit sowie Gefälle und wurden nach Anträgen der DB von 1987 und 1989 vom Bundesverkehrsministerium genehmigt.
Die LZB nutzte für Betriebsbremsungen zunächst Sollbremskurven mit einer typischen Verzögerung von 0,5 m/s², an der Triebfahrzeugführer (ggf. mit AFB) entlang bremsen sollen. Den Sollbremskurven wurden Bremsüberwachungskurven zugeordnet. Näherte sich der Triebfahrzeugführer diesen an, erfolgte zunächst eine optische und akustische Warnung, bei Erreichen wurde eine Zwangsbremsung ausgelöst. Die Bremsüberwachungskurven basierten auf zwölf verschiedenen Verzögerungen (zwischen 0,115 und 1,10 m/s²), die insbesondere vom Bremsvermögen des Zuges (Bremshundertstel) und dem Gefälle der Strecke abhängig waren. Entsprechende Bremstafeln wurden aufgestellt. Für Bremsausgangsgeschwindigkeiten bis 150 km/h wurden in den einzelnen Verzögerungsstufen dabei konstante Verzögerungen über den gesamten Geschwindigkeitsbereich unterstellt, für darüber liegende Bremsausgangsgeschwindigkeiten fielen die unterstellten Verzögerungswerte linear ab, um fallenden Haftwerten zwischen Rad und Schiene Rechnung zu tragen. Bremstafeln wurden zunächst für die Ebene, für 5 Promille Gefälle (Maximalwert erster Ausbaustrecken) sowie 12,5 Promille Gefälle (Maximalwert für Neubaustrecken) erstellt. Die 1986 aufgestellten Bremstafeln für Personenzüge (Bremsart R/P) umfassten den Geschwindigkeitsbereich von 80 bis 300 km/h. Für Güterzüge wurden später gesonderte LZB-Bremstafeln erstellt. Dabei wurden Geschwindigkeiten bis 120 km/h zu Grunde gelegt. Während konventionell nur 90 km/h (Bremsstellung G) bzw. 100 km/h (Bremsstellung P) zulässig waren, standen noch höheren Geschwindigkeiten mit LZB thermische Belastungsgrenzen der Bremsen entgegen.
Für die Schnellfahrstrecke Köln–Rhein/Main mit Neigungen bis 40 Promille hätte das bisherige LZB-Bremsmodell zu Betriebsbremswegen aus 300 km/h von bis zu ca. 15 km geführt. Aufgrund des vergleichsweise großen Verhältnisses von Soll- und Überwachungsverzögerung von 7/10 führte dies zu einem unnötig großen Abstand.
Mit der Einführung von CIR-ELKE II wurde das Bremsmodell weiterentwickelt. Dabei wurden zehn Bremstafeln (in 10-km/h- sowie 10-Bremshundertstel-Intervallen) für Gefälle bis 44 ‰ sowie Steigungen von bis zu 39 ‰ aufgestellt. Durch die Berücksichtigung mehrerer Bremstafeln in einem Bremsweg mit wechselnden Längsneigungen konnte die Streckenkapazität erheblich gesteigert werden.
Entwicklung der linienförmigen Zugbeeinflussung
In den 1920er Jahren liefen in Deutschland verschiedene Versuche mit punktförmigen Zugbeeinflussungssystemen. An bestimmten Punkten sollten dabei mittels mechanischer, magnetischer, elektrischer und induktiver Beeinflussung Züge automatisch verlangsamt oder angehalten werden können. Um damit verbundene betriebliche Einschränkungen zu überwinden, wurde eine linienförmige Zugbeeinflussung vorgeschlagen, die nicht nur an einzelnen Punkten, sondern kontinuierlich Zugfahrten beeinflussen sollte. In den Vereinigten Staaten waren linienförmige Systeme zu dieser Zeit bereits auf etwa 6000 km im Einsatz.
Vorgeschlagen wurde, den Überwachungsstrom der Gleisstromkreise zu nutzen, um kontinuierlich zu übertragen, ob die beiden vorausliegenden Blockabschnitte frei oder besetzt sind. Dabei sollten bis zu 20 cm über den stromdurchflossenen Schienen vor der ersten Achse liegende Empfängerspulen die Daten aufnehmen. Über Stromkreise sollten sowohl die Bremsen bedient als auch der Signalbegriff des zurückliegenden und der beiden vorausliegenden Blocksignale dem Triebfahrzeugführer mittels einer grünen, gelben bzw. roten Lampe angezeigt werden.
Die ersten Versuche mit einer linienförmigen Zugbeeinflussung fanden 1928 bei der U-Bahn Berlin statt.
Die Entwicklung der modernen LZB in Deutschland begann in den 1950er Jahren. Hermann Lagershausen, Gründer des Instituts für Verkehr, Eisenbahnwesen und Verkehrssicherung (heute Institut für Eisenbahnwesen und Verkehrssicherung) an der Technischen Universität Braunschweig (ehemals TH), unternahm einen wesentlichen Schritt der Entwicklung. Das Fahren auf elektrische Sicht war für Lagershausen eine wesentliche Weiterentwicklung für das System Bahn, die es damals in Deutschland zu erforschen galt.
In Zusammenarbeit mit Leo Pungs, Leiter des Instituts für Schwachstromtechnik an der TU Braunschweig, und erforschte er ein System, das einen Linienleiter zum Einschalten von Bahnübergängen (BÜ) nutzte. Das Projekt wurde zwar nicht umgesetzt, jedoch war damit das Potential des Linienleiters zur Informationsübertragung gezeigt. Basierend auf den Ergebnissen des BÜ-Projekts und eigenen neuen Überlegungen konnte Lagershausen die Deutsche Forschungsgemeinschaft (DFG) überzeugen, ein Projekt Das Problem des Fahrens von Eisenbahnzügen auf elektrische Sicht von 1958 bis 1964 zu fördern. Schwerpunkt des Projekts war die Erarbeitung der Grundlagen für die Verwendung des Linienleiters als Übertragungsmedium, um die ortsfesten Signale beim Fahren auf elektrische Sicht zu ersetzen.
Mit diesen theoretischen Grundlagen beschäftigte sich vor allem Peter Form, späterer Professor am Institut für Verkehr, Eisenbahnwesen und Verkehrssicherung der TH Braunschweig. 1956 begann er seine Arbeiten am Institut als Student. Zusammen mit Heinz Rummert erstellte er seine Studienarbeit Geschwindigkeitsabhängige Einschaltung von Bahnübergängen durch gekreuzte Linienleiter in immer kürzer werdenden Abständen. Basierend auf den in dieser Zeit gewonnenen Erkenntnissen und den von Rummert erarbeiteten Grundlagen beschäftigte er sich intensiv mit den betrieblichen und fahrdynamischen Randbedingungen eines Fahrens auf elektrische Sicht und stellte das Ergebnis seiner Überlegungen in seiner Dissertation dar.
Die Arbeiten von Form wurden durch Mitarbeiter der Siemens AG begleitet, die sich ebenfalls Gedanken über die Verwendung von Linienleitern machten. Gemeinsam wurden verschiedene Entwicklungen patentiert. So wurden die Bahnunternehmen auf die Arbeiten aufmerksam. Die Deutsche Bundesbahn unterstützte das Institut durch die Bereitstellung eines Gleisabschnitts, der großformatige Experimente zuließ. Die Hamburger Hochbahn AG (HHA) ermöglichte, auf ihrem U-Bahn-Netz Versuchsaufbauten zu installieren und damit wesentliche Informationen zu gewinnen.
Die ersten Versuche der DB mit einer linienförmigen Zugbeeinflussung gehen in das Jahr 1959 zurück. Nach Übertragungsversuchen auf den Streckenabschnitten Lehrte–Wolfsburg (ab 1960), Hanau–Flieden und Laufach–Heigenbrücken fiel die Entscheidung für ein Zeit-Multiplex-Verfahren. Ein entsprechender Prototyp – entwickelt von Siemens & Halske und der Deutschen Bundesbahn – wurde im Sommer 1963 auf einem rund 20 Kilometer langen Abschnitt zwischen Forchheim und Bamberg in Versuchen bei Geschwindigkeiten von bis zu 200 km/h erprobt. Die Linienzugbeeinflussung sollte anschließend auf der Bahnstrecke Hannover–Celle und deren Fortsetzung verwendet werden. Die Versuche auf dieser Strecke dauerten bis 1964. Nachdem die ersten Betriebsversuche mit lokaler Signaltechnik durchgeführt wurden – jede LZB-Schleife umfasste nur den Bereich zwischen zwei Signalen –, wurde die Versuchsstrecke ab Frühjahr 1964 auf ein zentrales Steuerungssystem umgebaut und ab Sommer 1964 erprobt. Für diese Zusammenfassung sprach unter anderem die geringere Zahl notwendiger Steuerstellen sowie deren Unterbringung in geschützten Gebäuden, die einfachere und übersichtlichere Eingabe von Langsamfahrstellen sowie konstante und ruhige Anzeigen auf der Lok. Auf dieser Grundlage fiel die Entscheidung zur Ausrüstung der Strecke München–Augsburg mit etwa 2 km langen Leiterschleifen und ortselektiver Ortung.
Ein wesentliches Ziel der Entwicklung in der Bundesrepublik Deutschland war, die Geschwindigkeit planmäßiger Reisezüge auf 200 km/h anheben zu können. Dabei stellte sich zunächst das Problem, dass beim üblichen Abstand zwischen Vor- und Hauptsignal von 1000 m und den damals üblichen Bremssystemen (ohne Magnetschienenbremse) ein sicheres Anhalten nur bis 140 km/h sichergestellt war. Bei einer mittleren Bremsverzögerung von 0,7 m/s² lag der angenommene Bremsweg aus 200 km/h, einschließlich einer Verzögerungszeit und einer Verzögerung bis zum vollen Bremseinsatz, bei etwa 2500 Meter. Damit hätten Lokführer aus 1,5 km – auch bei ungünstigen Sichtverhältnissen – den Signalbegriff des Vorsignals erkennen müssen, um am Halt zeigenden Hauptsignal sicher anhalten zu können. Die damalige Deutsche Bundesbahn stand damit vor der Wahl, entweder zusätzliche Signale an der Strecke aufzustellen (um mehrere Abschnitte voraus zu signalisieren) oder mittels einer Führerstandssignalisierung die Stellung mehrerer vorausliegender Signale im Führerstand zusammengefasst anzuzeigen. Gegen die Anordnung eines zusätzlichen „Vor-Vorsignals“ sprach ferner eine mögliche Verwirrung durch die große Zahl der auf dicht befahrenen Strecken zu beobachtenden Signale.
Die Bundesbahn entschied sich nach einer eingehenden Prüfung der Mehrabschnittssignalvariante aus einer Reihe von Gründen für eine Führerstandssignalisierung:
- Da das LZB-System auf die vorhandene Signalisierung aufsetzt, war eine Schulung von Betriebspersonal, das nicht mit Schnellfahrten befasst war, nicht notwendig. Auch konnten die vorhandenen Streckensignale beibehalten und mussten nicht verändert bzw. ergänzt werden.
- Signale an der Strecke müssen in der Regel nicht mehr beachtet werden. Daher kann ein Schnellfahrbetrieb auch bei ungünstigen Witterungsbedingungen erfolgen. Darüber hinaus entfallen Gefahren, die durch das Nicht-Erkennen, unbewusste Vorbeifahren oder fehlerhafte Ablesen eines Signalbegriffs entstehen können.
- Durch die weite Vorausschau über mehrere Hauptsignale hinweg besteht, soweit es die Fahrplanlage zulässt, die Möglichkeit einer angepassten und damit energiesparenden und sanfteren Fahrweise.
- Mit der ständigen Informationsübertragung zu den Zügen kann eine unmittelbare Reaktion auf Veränderungen von Signalbegriffen erfolgen (beispielsweise bei der Rücknahme eines fahrtzeigenden Signals bei plötzlicher Betriebsgefahr).
- In der Regel können schnellfahrende Züge auf konventionellen Strecken ebenso verkehren wie konventionelle Züge auf Schnellfahrstrecken.
- Bei einem Ausfall der Führerstandssignalisierung besteht die Möglichkeit, unter dem konventionellen Signalsystem mit niedrigeren Geschwindigkeiten zu fahren.
- Während an Hauptsignalen in den 1960er Jahren (ohne die heutigen Lichtsignal-Geschwindigkeitsanzeiger) in der Regel nur die Geschwindigkeitsstufen Halt, 40 oder 60 km/h sowie freie Fahrt signalisiert werden konnten, ermöglicht die LZB Fahranweisungen in beliebigen 10-km/h-Schritten.
- Die LZB ermöglicht die Unterteilung der Strecke in eine größere Zahl kleinräumigerer Blockabschnitte. Damit kann die Leistungsfähigkeit einer Strecke gesteigert werden. Bei hinreichend kleiner Blockabschnittslänge ist praktisch ein Fahren im absoluten Bremswegabstand möglich.
- In Verbindung mit der Automatischen Fahr- und Bremssteuerung (AFB) ist eine halbautomatische Steuerung von Zügen möglich. Die LZB galt dabei als ein Schritt hin zu einer möglichen Vollautomatisierung des Fahrens und Bremsens. Man dachte hierbei auch schon früh an mögliche Energieeinsparpotentiale durch den Einsatz der LZB.
Für eine effektive Sicherung der Schnellfahrten wurde die Führerstandssignalisierung um ein neues Zugbeeinflussungssystem ergänzt, das Fahrzeuge nicht nur an den Standorten der Signale (an bestimmten Punkten, punktförmig), sondern permanent überwachte. Diese kontinuierliche (linienförmige) Übertragung verlieh der Linienzugbeeinflussung ihren Namen.
Erste Überlegungen zur Konzeption der LZB gingen dabei zunächst an eine Anzeige der Stellung der drei kommenden Hauptsignale, einschließlich Ziel-, Soll- und Istgeschwindigkeiten im Führerstand. Anschließend setzte sich die Ansicht durch, dass eine Anzeige von Zielgeschwindigkeit und Zielabstand für den Triebfahrzeugführer günstiger wäre. Verworfen wurden auch Überlegungen, Linienleiterschleifen jeweils 2,7 km vor jedem Hauptsignal beginnen zu lassen.
Zwischenzeitlich, ab Anfang der 1960er Jahre, unternahm die Deutsche Reichsbahn zwischen Schkeuditz und Großkugel Versuche mit einer linienförmigen Zugbeeinflussung, die mit kodierten Gleisstromkreisen auf einen Versuchstriebwagen übertrug. Das Projekt zeigte die prinzipielle Nutzbarkeit, es scheiterte an fehlendem rechtlichen Bedarf einer Zugbeeinflussung und den materiellen Möglichkeiten der DDR. In der Bundesrepublik liefen Mitte der 1960er Jahre verschiedene Versuchsstrecken bei den Berliner Verkehrsbetrieben, der Hamburg Hochbahn und der Münchner U-Bahn. 1964 wurde eine automatisch gesteuerte Lok bei den Rheinischen Braunkohlewerken in Betrieb genommen, 1966 eine Anlage zur Rangierloksteuerung per Linienleiter in einem Hüttenwerk.
Die von der Deutschen Bundesbahn in Zusammenarbeit mit Siemens entwickelte Frühform der linienförmigen Zugbeeinflussung ermöglichte zunächst eine elektronische Vorausschau über fünf Kilometer. Sie kam ab 1965 auf der Bahnstrecke München–Augsburg zum Einsatz. Ausgerüstet wurde der Abschnitt zwischen dem Ausfahrsignal München-Pasing (km 8,5) und Augsburg-Hochzoll (km 57,0), dabei wurden fünf Steuerstellenbereiche gebildet. Einzelne Züge fuhren auf diesem Abschnitt zur Internationalen Verkehrsausstellung 1965 täglich mit einer Spitzengeschwindigkeit von 200 km/h. Mit LZB wurde auch von 1967 bis 1969 gefahren. Von 1969 bis 1974 stand die LZB nicht zur Verfügung. Aufgrund der kurzen Vorbereitungszeit konnten 17 schienengleiche Bahnübergänge für die Versuchsfahrten nicht aufgelöst werden und wurden in die LZB einbezogen. Die Mitte der 1960er Jahre in Betrieb genommenen Streckeneinrichtungen der LZB 100 waren zunächst in 3-Phasen-MT-Technik mit elektronischen Bauelementen (Germanium-Transistoren, Ringkerne) gebaut worden. Je Stellwerk war eine LZB-Steuerstelle einzurichten. Die entsprechende Fahrzeugausrüstung wurde ebenfalls als LZB 100 bezeichnet. Nach anderen Angaben wurde die LZB 100, als zweite LZB-Generation, ab 1974 eingeführt.
Anfang der 1970er Jahre wurde die Streckeninfrastruktur auf redundante Rechnersysteme der Firma umgestellt. Die von Siemens entwickelte, sogenannte Steuerstellentechnik wurde ab 1974 sukzessive zwischen München und Donauwörth sowie zwischen Hannover und Uelzen in Betrieb genommen. Die Streckengeräte basierten auf Schaltkreisen in 3-Phasen-MT-Technik. Die Streckenabschnitte wurden mit Schieberegistern nachgebildet, die ständig entgegen der Fahrtrichtung abgefragt wurden.
Ebenfalls 1974 begann Standard Elektrik Lorenz auf der Strecke Bremen–Hamburg an Stelle von fest verdrahteten Schaltungen Prozessrechner als Zwei-von-Drei-Rechner-Systeme einzusetzen („Bauform Lorenz“ bzw. „LZB L 72“). Die Betriebserprobung wurde auf der Strecke, mit den Streckenzentralen Sagehorn und Rotenburg (Han), am 17. Juni 1974 auf einer Länge von 43 km begonnen. Zunächst fuhren bis zu zwölf fahrplanmäßige Züge unter LZB-Führung, zum Winterfahrplan 1974/1975 wurde deren Zahl auf bis zu siebzehn erhöht. Die Ausrüstungskosten der Strecke betrugen 18 Millionen DM, wovon 7 Mio. DM auf die Sicherung von 29 Bahnübergängen entfielen.
Nachdem die linienförmige Zugbeeinflussung Mitte der 1970er Jahre die Serienreife noch nicht erreicht hatte, wurde für die ersten deutschen Neubaustrecken der Einsatz des Sk-Signalsystems mit einer Höchstgeschwindigkeit von 200 km/h erwogen. Als die Zuverlässigkeit 1975 gesteigert werden konnte, wurden diese Pläne verworfen. Die ab Oktober 1975 erprobte linienförmige Zugbeeinflussung wurde schließlich im Dezember 1978 für serienreif erklärt. Der Anteil der LZB-Ausfälle, gemessen an den zurückgelegten Streckenkilometern, lag bei etwa 1,5 Prozent. Die LZB wurde, auch in Zusammenarbeit mit den Schweizerischen Bundesbahnen, weiterentwickelt. So fanden in den Jahren 1977 bis 1979 auf der Strecke Bremen–Hamburg, sowie zwischen Lavorgo und Bodio auf der Gotthardbahn quantitative Zuverlässigkeitsuntersuchungen des Gesamtsystems statt. Die Ausfallraten (λ) der fahrzeugseitigen (pro Zug und Kilometer) und streckenseitigen Teile (pro Zentrale und Stunde, bzw. pro Kilometer und Stunde für den eigentlichen Linienleiter) lagen dabei im Bereich 10−3 bis 10−4. Sie differierten aufgrund der unterschiedlichen Entwicklungsstände zwischen den deutschen und Schweizer Systemvarianten allerdings bei einzelnen Teilsystemen deutlich. Eine Auswertung für das Jahr 1978 zeigte, dass typischerweise rund 1,7 Prozent der LZB-Zugkilometer aufgrund von Fahrzeugstörungen nicht unter LZB-Führung gefahren werden konnten. Eine Auswertung für die Strecke Hamburg–Bremen zeigte darüber hinaus, dass rund 0,5 Prozent der LZB-km aufgrund streckenseitiger Störungen nicht in LZB-Führung gefahren werden konnten. Etwa alle 6000 Stunden kam es zu einer LZB-Rechner-Störung, die einzelnen Teile der Anlage sollten nach einer Vollinspektion mit hoher Wahrscheinlichkeit ein halbes bis ein Jahr störungsfrei laufen. Bei den einzelnen Abschnitten des Linienleiters wurde mit einem Störungsabstand von drei bis sechs Monaten gerechnet.
Zum Fahrplanwechsel im Mai 1978 war der LZB-Betrieb mit 200 km/h auf den Streckenabschnitten München–Augsburg–Donauwörth, Hannover–Uelzen und Hamburg–Bremen auf insgesamt 170 von 260 Kilometern mit LZB ausgerüsteten Streckenkilometern aufgenommen worden.
Ende März 1982 genehmigte der Entwicklungsausschuss der damaligen Deutschen Bundesbahn die Beschaffung von acht Prototyp-Fahrzeuggeräten LZB 80. Die LZB 80 gilt als dritte Generation der LZB und wurde ab 1984 eingeführt.
Im Jahr 1980 waren bei der Deutschen Bundesbahn rund 150 Lokomotiven der Baureihe 103, drei Triebzüge der Baureihe 403 sowie 140 Triebzüge der Baureihe 420 mit LZB ausgerüstet.
Bis in die 1980er Jahre hinein bildete die LZB nur die bestehende Infrastruktur (ortsfeste Signale) ab. Die dahinter stehende Infrastruktur (z. B. Stellwerke, Streckenblock) wurde unverändert beibehalten. Abgesehen von den mit LZB möglichen Schnellfahrten wurden Fahrzeuge ohne LZB-Ausrüstung blocktechnisch gleich behandelt: Beide befuhren Blockabschnitte gleicher Größe, die jeweils von ortsfesten Licht- oder Formsignalen gedeckt wurden. Die ortsfesten Signale haben dabei Vorrang vor den Anzeigen der LZB. In der damaligen Fahrdienstvorschrift war das Verfahren als Betriebsverfahren LZB mit Signalvorrang definiert.
Die Fahrzeugsoftware war zunächst noch in Assembler geschrieben und wurde Anfang der 1990er Jahre auf Pascal umgestellt.
Umsetzung in Deutschland
Die zwischen 1987 und 1991 in Betrieb genommenen Neubaustrecken Hannover–Würzburg und Mannheim–Stuttgart wiesen erstmals eine unterschiedliche Blockteilung auf: Ortsfeste Lichtsignale deckten hier nur noch Gefahrenpunkte (insbesondere Bahnhöfe und Überleitstellen), während auf der dazwischen liegenden Freien Strecke (auf einer Länge von bis zu etwa 7 km) keine Blocksignale aufgestellt wurden. Während „nicht LZB-geführte Züge“ nur mit einem fahrtzeigenden Lichtsignal in den folgenden Blockabschnitt einfahren konnten (sogenannter Ganzblockmodus), war die freie Strecke in LZB-Blockabschnitte von etwa 2500 Metern Länge unterteilt (sogenannter Teilblockmodus). Fährt ein LZB-geführter Zug dabei in einen freien LZB-Blockabschnitt ein, dessen zugehöriger H/V-Blockabschnitt noch nicht frei ist, wird das deckende Lichtsignal dunkelgeschaltet. Die Teilblockabschnittsgrenzen werden durch Blockkennzeichen gekennzeichnet. Die Gleisfreimeldung entspricht jedoch den Teilblockabschnitten. An den Tafeln ist, vergleichbar mit realen Blocksignalen, zu halten, wenn das wegen zu geringem Abstand zum vorgelegenen Zug vorgeben wird.
Darüber hinaus wird die Dunkelschaltung in der LZB-Version CIR-ELKE auch benutzt, wenn ein Widerspruch zwischen der LZB-Vorgabe und der örtlich signalisierten Geschwindigkeit besteht. Da eine am Signal herabgesetzte Geschwindigkeit bei einem anschließenden Weichenbereich vom Standort des Signals bis zum Ende des gesamten Bereichs gilt, CIR-ELKE und ETCS hingegen die Geschwindigkeit nur auf den entsprechenden Streckenelementen (z. B. nur den abzweigenden Weichen des Weichenbereichs) einschränken, werden Signale bei dieser Diskrepanz ebenfalls dunkelgeschaltet.
Erstmals kam dieses Betriebsverfahren LZB-Führung mit Vorrang der Führerraumsignale vor den Signalen am Fahrweg und dem Fahrplan – in der Fahrdienstvorschrift als LZB-Führung bezeichnet – ab Mai 1988 mit Eröffnung des Teilabschnittes Fulda–Würzburg zum Einsatz. Auf den sechs übrigen LZB-Abschnitten in Deutschland hatten aus technischen Gründen zunächst weiterhin Fahrplan und die Signale am Fahrweg Vorrang vor der LZB. Auf diesen Streckenabschnitten kam der LZB zunächst eine Vorsignalfunktion zu, um die notwendigen Bremswege bei Geschwindigkeiten über 160 km/h zu schaffen. Die LZB wurde damit von einem Overlay-System zum primären Signalisierungssystem. Blockabschnitte konnten damit auch ohne ortsfeste Signale gebildet werden. An die Stelle von Blocksignalen traten LZB-Blockkennzeichen. Mit der EBO-Änderung von Juni 1991 wurde die Möglichkeit, mit Systemen wie der LZB auf konventionelle Vor- und Hauptsignale zu verzichten, nachgezogen.
In den folgenden Jahren wurden auch die alten LZB-100-Streckeneinrichtungen auf rechnergestützte Zwei-von-drei-Rechner-Systeme der Bauart LZB L72 für das neue Verfahren umgerüstet. Die mikroprozessorgestützte Fahrzeugeinrichtung LZB 80 war 1987 serienreif geworden und wurde fahrzeugseitig zunächst in die Lokomotiven der Baureihe 103 eingebaut, später in die der Reihe 120 und die ICE 1. Streckenseitig konnte aus einer LZB-L72-Zentrale ein 50 bis 100 Kilometer langer Abschnitt einer zweigleisigen Strecke gesteuert werden. Durch die redundante zwei-von-drei-Rechner-Technik konnte auch die Zuverlässigkeit der Streckeneinrichtung deutlich gesteigert werden.
Durch den Teilblockmodus konnten allein zwischen Fulda und Würzburg 120 Blocksignale im Umfang von rund zehn Millionen D-Mark eingespart werden. Pläne, im Rahmen eines universellen 40-GHz-Funksystems für die ersten beiden deutschen Neubaustrecken auch die Linienzugbeeinflussung auf Funkübertragung umzustellen, wurden Ende der 1980er Jahre verworfen.
Die Gleismagnete der punktförmigen Zugbeeinflussung zur Zwangsbremsung bei nicht beachteten Signalen bleiben bei dunkelgeschalteten Signalen wirksam und die Fahrzeugeinrichtung nimmt die Beeinflussungen auch auf, ihre Wirkung wird jedoch beim Vorliegen von Führungsgrößen verworfen. Durch das Weglassen konventioneller Blocksignale konnten auf den Strecken Hannover–Würzburg und Mannheim–Stuttgart über 30 Millionen DM Investitionskosten gespart werden. In den ersten Wochen des ICE-Betriebs wurden 1991 bis zu 19 LZB-Störungen je 100.000 Zugkilometer registriert. Dieser Wert ging bis Anfang 1992 auf wenige Störungen je 100.000 km zurück.
Alle weiteren deutschen Neubaustrecken wurden in gleicher Weise ausgerüstet; zusätzliche Blockstellen mit Lichtsignalen wurden nur noch in Einzelfällen eingerichtet (Fahren auf elektronische Signalsicht mit wenigen Signalen). Weitere Entwicklungsstufen mit vollständigem Verzicht auf ortsfeste Signale (Fahren auf elektronische Signalsicht ohne Signale) sowie das Fahren auf elektronische Sicht im absoluten Bremswegabstand wurden nicht umgesetzt. 1990 wurde das Betriebsverfahren LZB-Führung mit Vorrang der Führerraumsignale vor den Signalen am Fahrweg und dem Fahrplan auf allen LZB-Strecken eingeführt. In den 1990er Jahren wurde eine Reihe von funktionalen Weiterentwicklungen der LZB diskutiert, beispielsweise Rangieren unter LZB, die Erteilung von frühzeitigen Abfahraufträgen für Güterzüge (ab Zulässigkeit der Fahrstraße) sowie die Wiederaufnahme in die LZB an jedem beliebigen Punkt.
In den 1970er Jahren lag die Voraussicht auf die Strecke bei bis zu fünf Kilometern. Vor Inbetriebnahme der ersten Neubaustrecken (bis 280 km/h und 12,5 ‰ Gefälle) war in den 1980er Jahren eine Weiterentwicklung zur mikroprozessorgestützen LZB 80 erforderlich. Die Voraussicht wurde dabei auf 10 km erhöht. Im Netz der Deutschen Bahn liegt sie heute bei einer eingestellten Fahrzeughöchstgeschwindigkeit von 200 km/h typischerweise bei 7 km, zwischen 230 und 280 km/h bei 10 km sowie 13 km bei 300 km/h.
Anfang der 1990er Jahre hatte die LZB eine Verfügbarkeit, gemessen an der Zahl der zurückgelegten Streckenkilometer, von mehr als 99,9 Prozent erreicht. Mitte der 1990er Jahre wurde die LZB 80/16, basierend auf 16-Bit-Prozessoren und einer Software in Hochsprache, eingeführt. Im weiteren Verlauf wurden zunehmend mehr Fahrzeuge mit LZB ausgerüstet und die LZB per Systemumschaltung in Mehrsystemfahrzeuge integriert.
2002 hatte die Deutsche Bahn 1870 km Strecken und 1700 führende Fahrzeuge mit LZB in Betrieb. Daneben waren eine Reihe von Fahrzeugen ausländischer Bahnen mit LZB für den Verkehr in Deutschland ausgerüstet.
Um 2007 wurde mit der LZB-Fahrzeugeinrichtung LZB 80E eine Weiterentwicklung der LZB 80/16 eingeführt.
2009 hatte die Bundesnetzagentur den Wunsch der DB abgelehnt, auf der Oberrheinstrecke alle Züge ohne CIR-ELKE-II-LZB auszuschließen oder nachrangig zu behandeln. Sie begründete dies mit nur marginalen Kapazitätsgewinnen und Unangemessenheit des Ausschlusses einiger Wettbewerber, zumal bei einem konkreten Konflikt schnellere, weniger Kapazität verbrauchende Züge ohnehin über die Priorisierung bei der Trassenvergabe zum Zuge kommen dürften. Die Frage, ob die Ausrüstung führender Fahrzeuge mit Linienzugbeeinflussung als Netzzugangskriterium für die Neubaustrecke Nürnberg–Ingolstadt festgelegt werden kann, war von August 2011 bis Juni 2012 Gegenstand einer Auseinandersetzung zwischen DB Netz und Bundesnetzagentur. Das Oberverwaltungsgericht für das Land Nordrhein-Westfalen gab letztlich der Rechtsauffassung der DB statt und erlaubte ein entsprechendes Kriterium. Für einen als überlasteten Schienenweg geltenden Teil der Schnellfahrstrecke Hannover–Berlin sollen Trassenanmeldungen für nicht LZB-geführte Züge zukünftig nachrangig behandelt werden.
Triebfahrzeuge auf LZB-Strecken in Deutschland müssen heute mindestens CIR-ELKE-I-fähig sein, da mit der Hochrüstung 2024 aller deutschen LZB-Strecken auf CIR-ELKE abgeschlossen wurde. Ein LZB-Nothalt steht damit nicht mehr zur Verfügung.
Umsetzung in Österreich
Zum Fahrplanwechsel am 23. Mai 1993 verkehrten in Österreich erstmals (EuroCity-)Züge mit einer Geschwindigkeit von 200 km/h, auf einem 25 Kilometer langen Abschnitt der Westbahn Linz – Wels, der mit LZB ausgerüstet worden war.
Da in Österreich die vollständige Signalisierung samt Blockabschnitte erhalten blieb, zeigen die Signale in Österreich auch bei LZB-Fahrt Fahrtbegriffe an. Ein Signal, das nicht explizit Fahrt oder Fahrverbot aufgehoben anzeigt, entspricht nach den bestehenden österreichischen Bestimmungen einem haltzeigenden Signal und löst eine Zwangsbremsung aus.
Die LZB wurde später auf den Abschnitt St. Pölten – Attnang-Puchheim (ohne die Abschnitte Ybbs–Amstetten, Linz Kleinmünchen–Linz Leonding) ausgedehnt. Seit 9. Dezember 2012 erlaubt die LZB zwischen St. Valentin und Linz Kleinmünchen erstmals eine Höchstgeschwindigkeit von 230 km/h, die vom Railjet und ICE T auch gefahren wird.
Im Jahr 2022 wurde die LZB im Abschnitt Linz – Attnang-Puchheim abgebaut (aufgrund der Veralterung der LZB-Version in der Leitstelle Wels). Ab 2023[veraltet] wird dort ETCS Level 2 zum Einsatz kommen. Die Außerbetriebnahme der LZB und Umrüstung auf ETCS im verbleibenden Abschnitt St. Pölten – Linz erfolgt bis 2030.
Überlegungen zur Funk-Zugbeeinflussung
Bereits Ende der 1970er Jahre wurde im Rahmen eines vom deutschen Bundesministerium für Forschung und Technologie geförderten Projektes die Möglichkeit untersucht, die Informationen der LZB per Funk zu übertragen (unter anderem im Bereich von 40 GHz). Die Untersuchungen waren zu dem Ergebnis gekommen, dass eine Umsetzung zu damaliger Zeit nicht wirtschaftlich war. Darüber hinaus blieb offen, wie die durch die Leiterschleifen ermöglichte Ortung bei einem Funksystem umgesetzt werden würde. Untersucht wurden verschiedene Möglichkeiten, beispielsweise eine Messung der Laufzeit der Funksignale, Satellitennavigation oder Datenpunkte im Gleis. Anfang der 1990er Jahre folgte eine zweijährige, durch das Forschungsministerium und den Senat von Berlin finanzierte Studie, in der die Mobilfunktechnik GSM als Basis für die Entwicklung eines Funksystems für die Bahn ausgewählt wurde.
Das heute von der EU zur Einführung vorgeschriebene europaweit einheitliche Zugbeeinflussungssystem ETCS führt die Entwicklungen der zuvor in Deutschland erprobten Funkzugbeeinflussung weiter. Ab der Ausbaustufe „ETCS Level 2“ werden die Daten zum Fahren auf elektronische Signalsicht mit der GSM-Variante GSM-R zwischen Fahrzeug und Streckenzentrale ausgetauscht. Zur sicheren Ortsbestimmung werden im Gleis installierte Eurobalisen (Datenpunkte) verwendet.
Entwicklungsschritte
Die folgende Tabelle gibt einen Überblick über die wichtigsten Entwicklungsschritte der LZB:
Daten | Beschreibung | Steuerung / Länge |
---|---|---|
1963 | Testfahrten auf der Strecke Forchheim–Bamberg | |
1965 | 200-km/h-Präsentationsfahrten auf der Strecke München–Augsburg mit der Baureihe 103.0 | |
1965–1974 | Entwicklung und Sicherheitsnachweis | |
1974–1976 | Betriebserprobung auf der Strecke Bremen–Hamburg | 3 Zentralen / 90 km |
1976 | Ausbau der Strecke Hamm–Gütersloh | |
1978–1980 | S-Bahn-Pilotprojekt in Madrid (Renfe) | 1 Zentrale / 28 km |
1980–1985 | Serienausrüstung bei der Deutschen Bundesbahn | 7 Zentralen / 309 km |
1987 | Betriebsbeginn auf den Neubaustrecken Fulda–Würzburg und Mannheim–Hockenheim | 4 Zentralen / 125 km |
1987 | Beschluss der Österreichischen Bundesbahnen zur Einführung von LZB | |
1988–1990 | Weitere Ausbaustrecken bei der DB | 2 Zentralen / 190 km |
1991 | Inbetriebnahme Neubaustrecken Hannover–Fulda und Mannheim–Stuttgart und weiterer Ausbaustrecken | 10 Zentralen / 488 km |
1992 | Neubaustrecke Madrid–Córdoba–Sevilla (RENFE) zur Weltausstellung in Sevilla | 8 Zentralen / 480 km |
1992 | Erster Abschnitt der Strecke Wien–Salzburg bei der ÖBB | 1 Zentrale / 30 km |
1995 | Inbetriebnahme S-Bahn-Linie Cercanias C5 Madrid | 2 Zentralen / 45 km |
1998 | Inbetriebnahme Neubaustrecke Hannover–Wolfsburg–Berlin und Ausbaustrecke Würzburg–Nürnberg mit ESTW-Koppelung | 6 Zentralen |
1999 | Inbetriebnahme CIR-ELKE-Pilotstrecke Offenburg–Basel mit CE1-Systemsoftware | 4 Zentralen |
2001 | Inbetriebnahme CIR-ELKE-Pilotstrecke Achern | 1 Zentrale |
2002 | Inbetriebnahme Schnellfahrstrecke Köln–Rhein/Main (CE2-Software mit Weichenausdehnung) | 4 Zentralen |
2003 | Inbetriebnahme Ausbaustrecke Köln–Düren(–Aachen) (CE2-Software auf ABS) | 1 Zentrale / 40 km |
2004 | Inbetriebnahme Ausbaustrecke Hamburg–Berlin (CE2-Software auf ABS) | 5 Zentralen |
2004 | Inbetriebnahme S-Bahn München (CE2-Software mit teils stark verkürzten Blockabständen (bis zu 50 m)) | 1 Zentrale |
2006 | Inbetriebnahme Ausbaustrecke Berlin–Halle/Leipzig (CE2-Software in ETCS-Doppelausrüstung) | 4 Zentralen |
2006 | Inbetriebnahme Schnellfahrstrecke Nürnberg–Ingolstadt (CE2-Software mit Weichenausdehnung) | 2 Zentralen |
Verschiedene Überlegungen, im Sinne einer vorausschauenden, konfliktvermeidenden Fahrweise über die LZB auch Geschwindigkeiten unterhalb der sicherheitsrelevanten Beschränkungen zu signalisieren, wurden nicht umgesetzt.
Fehlfunktionen
Obwohl das LZB-System als sehr sicheres Zugbeeinflussungssystem gilt, ereigneten sich unter LZB einige gefährliche Ereignisse:
- Am 29. Juni 2001 ereignete sich auf der Bahnstrecke Leipzig–Dresden im Bahnhof Oschatz beinahe ein Unfall. Per LZB wurde dem Lokführer des ICE 1652 auf der Fahrt von Dresden nach Leipzig wegen einer Signalstörung in Dahlen für den Wechsel in das Gegengleis auf dem Westkopf des Bahnhofs Oschatz eine Geschwindigkeit von 180 km/h signalisiert, obwohl die Weichenverbindung nur mit 100 km/h befahren werden darf. Der Triebfahrzeugführer erkannte die abzweigend gestellten Weichen und bremste noch auf 170 km/h herunter. Der Zug entgleiste nicht, fuhr noch bis Leipzig Hbf weiter und wurde dort untersucht. Nachdem ein Interregio am selben Tag ebenfalls Probleme mit der LZB hatte, wurde diese vorübergehend außer Betrieb genommen. Aufgrund eines Fehlers im Abgleich von LZB- und ESTW-Daten kannte die LZB-Streckenzentrale die Geschwindigkeitseinschränkung nicht.
- Am 17. November 2001 kam es in Bienenbüttel (Bahnstrecke Lehrte–Hamburg-Harburg) zu einem Beinahe-Unfall. Der Lokführer des ICE 91 Hamburg–Wien sollte einen liegengebliebenen Güterzug im Gegengleis überholen. Dabei befuhr er eine für 80 km/h zugelassene Weichenverbindung mit 185 km/h, ohne zu entgleisen. Als Ursache wird die fehlerhafte Ausführung einer Schaltungsänderung im Stellwerk vermutet, die bei einer Anhebung der Überleitgeschwindigkeit von 60 auf 80 km/h stattfand. Bei 60 km/h wird im Netz der ehemaligen Deutschen Bundesbahn bei Anwendung des H/V-Signalsystems der Signalbegriff Langsamfahrt erwarten zusammen mit einem Geschwindigkeitsanzeiger angezeigt. Bei Ausfall des Geschwindigkeitsanzeigers wird nur noch Langsamfahrt erwarten alleine angezeigt und damit reduzierte Geschwindigkeit von 40 km/h signalisiert. Dadurch ist in diesem Fall keine zusätzliche Überwachung des Geschwindigkeitsanzeigers notwendig. Bei einer Überleitgeschwindigkeit von 80 km/h wird der Signalbegriff Fahrt erwarten zusammen mit dem Geschwindigkeitsanzeiger angezeigt. Fällt in diesem Fall der Geschwindigkeitsanzeiger aus, würde ohne zusätzliche Abhängigkeit die Streckenhöchstgeschwindigkeit gelten. Daher ist ab 80 km/h zwingend die Überwachung des Geschwindigkeitsanzeigers notwendig. Aufgrund des Fehlens dieser Abhängigkeit, die die Anschaltung des Fahrtbegriffes nur beim korrekten Leuchten des Geschwindigkeitsanzeigers ermöglicht, wurde an diesem Tag fälschlicherweise die für gerade Durchfahrten zugelassene Geschwindigkeit von 200 km/h statt der abzweigend zugelassenen 80 km/h per LZB an den Zug übermittelt, da die LZB-Streckenzentrale die Signalbilder der Lichtsignale zur Ermittlung der Führungsgrößen abgreift. Als Sofortmaßnahme untersagte DB Netz LZB-geführte Fahrten im Gegengleis. Als zwei Tage später ein Triebfahrzeugführer mit nicht plausiblen Führungsgrößen an ein haltzeigendes Signal herangeführt wurde, wurde die betroffene LZB-Zentrale Celle vorübergehend außer Betrieb genommen und überprüft. Die Auswertung der PZB-Registrierung des Fahrzeugs ergab, dass keine Beeinflussung (1000/2000 Hz) registriert wurde.
- Am 9. April 2002 kam es auf der Schnellfahrstrecke Hannover–Berlin zu einem Beinahe-Zusammenstoß. Nachdem in Fallersleben der Rechner der LZB-Streckenzentrale ausgefallen war, kamen auf beiden Streckengleisen jeweils zwei Züge in einem Blockabschnitt (Teilblockmodus) zum Halten. Beim Hochfahren des Rechners wurde dabei dem jeweils hinteren Zug eine Geschwindigkeit von 160 km/h signalisiert, dem vorderen jeweils 0 km/h. Einer der beiden nachfahrenden Lokführer sah den vor ihm stehenden Zug, der andere fragte sicherheitshalber in der Betriebszentrale an, die ihn vor Abfahrt warnte. Infolge des Vorfalls erließen DB Cargo und DB Personenverkehr am 11. April eine Weisung an ihre Triebfahrzeugführer, mit der besondere Vorsichtsmaßnahmen bei LZB-Ausfall im Teilblockmodus angeordnet wurden. Als Ursache gilt ein Softwarefehler.
Komponenten und Aufbau
Für einen LZB-Betrieb müssen sowohl die Strecke als auch das Triebfahrzeug oder auch der Steuerwagen für LZB ausgerüstet sein. Dazu werden die im Folgenden beschriebenen Komponenten benötigt.
Streckeneinrichtungen
Linienleiterverlegung
Für die Übertragung zwischen Fahrzeug und Streckenzentrale verwendet die LZB einen im Gleis verlegten Linienleiter. Der Bereich, in dem dieselbe Information übertragen wird, heißt Schleifenbereich.
Der Linienleiter wird in Schleifen verlegt. Dabei wird ein Strang in Gleismitte, der andere im Schienenfuß verlegt. Nach 100 Metern werden die Stränge getauscht (gekreuzt), an dieser Stelle ändert sich die Phasenlage des Signals um 180°. Dies eliminiert elektrische Störungen und wird vom Fahrzeug zur Ortung genutzt. Das Fahrzeuggerät erkennt durch zwei aktive Antennen die Phasensprünge. Diese Orte werden auch als Kreuzungsstellen oder 100-m-Punkte bezeichnet. Maximal können 126 Kreuzungsstellen in einem Schleifenbereich vorhanden sein, wodurch sich dieser in maximal 127 Fahrorte teilt und sich somit eine maximale Länge von 12,7 km pro Schleifenbereich ergibt. In Gleismitte wird das Linienleiterkabel auf jeder zweiten Schwelle von einem Kunststoffclip gehalten, im Schienenfuß durch je eine Schienenfußklammer alle 25 Meter. Die Kreuzungsstellen, Schleifenenden und Einspeisestellen werden insbesondere zum Schutz vor Beschädigungen durch Baumaschinen mit Profilblechen abgedeckt. Einspeisestellen und Schleifenenden liegen in der Regel zwischen zwei Kreuzungsstellen, damit werden beim Ausfall einer Kurzschleife im Regelfall nur drei Kreuzungsstellen nicht erkannt.
- Kurzschleifentechnik
- Bei der Kurzschleifentechnik werden die Schleifenbereiche in einzelnen Schleifen von maximal 300 Meter Länge verlegt. Die Speisung der Kurzschleifen erfolgt parallel, so dass in einem Schleifenbereich in allen Kurzschleifen die gleiche Information übertragen wird. Die Verbindung zwischen Fernspeisegerät und Streckenzentrale wird über vier Adern eines sternviererverseilten Signalkabels hergestellt, an dem alle Speisegeräte eines Schleifenbereichs angeschlossen werden.
Der Vorteil der Kurzschleifentechnik ist die höhere Ausfallsicherheit. Bei einer Unterbrechung des Linienleiters fällt maximal ein 300 Meter langes Teilstück mit drei Kreuzungsstellen aus. Diese Unterbrechung kann vom Fahrzeug überbrückt werden. Die Kurzschleifenfernspeisegeräte werden über ein zusätzliches Stromversorgungskabel mit einer Versorgungswechselspannung von 750 Volt gespeist.
- Langschleifentechnik
- Der Schleifenbereich besteht aus einer einzigen Schleife, die von einem Fernspeisegerät gespeist wird. Dieses ist ungefähr in der Schleifenmitte positioniert. Die Verbindung zur Streckenzentrale wird ebenfalls mit vier Adern eines sternviererverseilten Signalkabels hergestellt. Nachteil dieser Verlegeart ist, dass bei einem Ausfall des Fernspeisegerätes oder der Unterbrechung des Linienleiters der ganze Schleifenbereich ausfällt und die Ortung der Fehlerstelle nur durch Absuchen des gesamten Schleifenbereiches möglich ist. Außerdem fällt die linienförmige Zugbeeinflussung im gesamten Schleifenbereich aus. Aus diesem Grund werden Langschleifen nicht mehr eingebaut, vorhandene Langschleifenbereiche wurden auf Kurzschleifentechnik umgerüstet.
Topologie
Für die Ausrüstung einer Strecke mit LZB stehen pro Streckenzentrale 16 Schleifenbereiche zur Verfügung. Den Wechsel eines Schleifenbereichs zeigt der Bereichkennungswechsel (BKW). Die Schleifenbereiche können je nach Streckengegebenheiten parallel und/oder hintereinander angeordnet werden. Für jedes mit LZB ausgerüstete Überholgleis wird bei LZB L72 ein eigener Schleifenbereich benötigt. Wenn Schleifenbereichsnummern aufgrund der auszurüstenden Streckenlänge knapp waren, wurde deshalb häufig auf die Ausrüstung von Überholgleisen verzichtet. Ab L72 CE kann der Verbrauch an Schleifenbereichsnummern reduziert werden: Der Schleifenbereich eines Überholgleises kann in Überholgleisen von Nachbarbahnhöfen fortgeführt werden, sofern die maximale Schleifenlänge von 12,7 km noch nicht ausgeschöpft wurde.
Rein theoretisch können mit einer Streckenzentrale 101,6 km zweigleisige Strecke (ohne Überholungen) ausgerüstet werden. Bei Bedarf werden weitere Streckenzentralen eingesetzt. Benachbarte Streckenzentralen heißen Nachbarzentralen.
Streckengeräte
Streckenseitig werden im Wesentlichen folgende Einrichtungen benötigt:
- LZB-Streckenzentrale: Der Kern der LZB-Streckenzentrale besteht aus einem zwei-aus-drei-Rechnersystem, das die Fahrbefehle für die Fahrzeuge berechnet. Über spezielle Modemverbindungen wird die Verbindung zwischen Fernspeisegeräten, Nachbarzentralen und Stellwerken unterhalten. Die Übertragung der Information erfolgt auf dem Informationskabel, in dem je Übertragungskanal (Schleifen, Nachbarzentralen, Stellwerke) ein Kabelvierer (je zwei Adern für Richtung Zentrale → Geräte bzw. Geräte → Zentrale) vorhanden ist. Die Verbindung zu Elektronischen Stellwerken (ESTW) erfolgt über eine LAN-Koppelung.
- Zur Anbindung der LZB an Elektronische Stellwerke wurden ab 1993 LANCOP-1-Koppelrechner entwickelt, die auf Grundlage der OSI-konformen Protokollbasis MAP 3.0 und MMS das CirNet-Übertragungsprotokoll realisierten. Damit wurde eine Verbindung zwischen ESTW und (mittels paralleler Schnittstelle) LZB-Rechnern hergestellt. Diese Rechner haben eine weite Verbreitung erfahren.
- In den 2000er Jahren wurden die LANCOP-2-Rechner entwickelt. Auf der Grundlage von LAN, des IP-Protokolls und des Betriebssystems SELMIS wurde eine serielle Schnittstelle zum LZB-Rechner bereitgestellt. Für diese LZB-seitig nur mit CIR-ELKE nutzbare Schnittstelle erhielten LZB-Rechner eine beschleunigte serielle Schnittstelle mit 38 400 Baud. Wesentliche Ziele der Weiterentwicklung waren neben einer technischen Modernisierung auch gesteigerte Anforderungen an Verfügbarkeit, geringere Signalverarbeitungszeiten und der Wunsch, mehrere Zugsicherungssysteme anbinden zu können. Mit dieser Schnittstelle können auch ETCS-Zentralen angebunden werden. Über die LAN-Kopplung werden dabei von den ESTW zur LZB- bzw. ETCS-Zentrale Elementzustände (Weichen, Signale) übermittelt und in Gegenrichtung fahrtabhängige Steuerkommandos übermittelt. Damit einhergehend wurde zwischen der Deutschen Bahn, Alcatel und Siemens SAHARA („Safe, Highly Available and Redundant“) als Standard-Schnittstelle für Zugsicherung definiert. Das Protokoll definiert zwischen der Anwendungs- und der Transportschicht des OSI-Modells eine Sicherheits- und Sendewiederholungs- sowie eine Redundanzschicht. Es wurde später auch auf der HSL Zuid und im Lötschberg-Basistunnel eingesetzt. Langwierige internationale Standardisierungsentscheidungen sollten nicht abgewartet werden.
- An eine LZB-Zentrale (L72, Stand 2006) können bis zu zehn Relaisstellwerke (über Fernsteuergestelle) oder bis zu zehn Elektronische Stellwerke (über LAN-COP-L-Schnittstelle) sowie bis zu sechs Nachbar-LZB-Zentralen angebunden werden. Jede LZB-Zentrale kann 16 Linienleitkanäle mit bis zu 12,7 km Länge (127 Fahrorte) verwalten. Einer maximalen Länge von 101,6 km zweigleisiger Strecke stehen in der Praxis maximale Längen von 60 km gegenüber.
- Fernspeisegeräte (bei Kurzschleifentechnik: Kurzschleifenfernspeisegeräte KFS): Das Fernspeisegerät speist die von der LZB-Zentrale kommenden Informationen des Informationskabels in den Linienleiter ein. Vom Fahrzeug gesendete Antworttelegramme werden verstärkt und über das Informationskabel an die LZB-Zentrale gesendet. In einem Schleifenbereich, bei Kurzschleifentechnik in allen Kurzschleifen, wird von der LZB-Zentrale die gleiche Information eingespeist.
- Voreinstellungsgeräte oder Anfangsgeräte (VE-Geräte, A-Geräte): Geräte für die Erzeugung von Voreinstelltelegrammen in den Voreinstellschleifen.
- Potentialtrennschränke: Durch Fahrleitungseinflüsse kommt es im Informationskabel zu Fremdspannungen. Durch eine galvanische Trennung in den Potentialtrennschränken wird die Einhaltung der maximalen Fremdspannungswerte innerhalb des Informationskabels erreicht.
- Verstärkerschränke: Wegen der teils großen Entfernung zwischen Streckenzentrale und Fernspeisegeräten ist eine Verstärkung der Signale erforderlich. Hierzu werden Verstärkerschränke verwendet.
- Linienleiterschleifen im Gleis: Die Linienleiterschleifen werden mit einem stabilen, einadrigen Kabel verlegt, das den Witterungseinflüssen widersteht und welches die notwendigen Antenneneigenschaften besitzt (siehe Bild).
- Zusätzliche LZB-Signalisierung (v. a. Blockkennzeichen, Bereichskennzeichen): Blockkennzeichen werden an den Stellen aufgestellt, an denen ein LZB-Blockabschnitt endet und „die nicht durch den Standort eines Hauptsignals gekennzeichnet sind“; sie markieren die Stelle, an der ein LZB-geführter Zug bei einer Betriebsbremsung zum Stehen kommen muss, wenn die Einfahrt in den folgenden Blockabschnitt nicht gestattet ist. Bereichskennzeichen signalisieren einen Bereichskennungswechsel und damit den Übergang in den nächsten Schleifenbereich. An den Bereichskennungswechseln (BKW) können Züge auch ohne Voreinstellung durch ein Anfangsgerät in die LZB-Führung aufgenommen werden.
Fahrzeugausrüstung
Allgemeines
Die fahrzeugseitige Ausrüstung für den LZB-Betrieb besteht in Deutschland aus folgenden Komponenten:
- LZB-Fahrzeugrechner: Abhängig vom Hersteller gibt es zwei Konzepte:
- Die aus drei parallel arbeitenden Rechnern bestehende Rechnereinheit bildet durch einen programmgesteuerten Datenvergleich ein sicherungstechnisches Schaltwerk.
- Es läuft eine diversitäre Software auf einem sicheren Rechner.
- Stromversorgung: Die Stromversorgung ist redundant aufgebaut und wird vom Fahrzeugrechner überwacht.
- Sende-/Empfangsantennen: Die Antennen des Fahrzeuges sind ebenfalls redundant ausgelegt, es gibt je zwei Sende- und zwei bzw. vier Empfangsantennen (zwei Paar). Die Anzahl der Empfangsantennen ist fahrzeugspezifisch und wird vom Hersteller festgelegt.
- Wegsensorik Pent: Für die Weg- und Geschwindigkeitsmessung werden zwei Rad-Sensoren (Wegimpulsgeber) und ein Beschleunigungsmesser oder ein Radar verwendet (Verschiedene Herstellerkonzepte).
- Zwangsbremseingriff: Beim Zwangsbremseingriff erfolgt eine Sicherheitsreaktion auf die Hauptluftleitung, diese wird entlüftet. Der Zwangsbremseingriff erfolgt auf die Hauptluftleitung entweder über eine sogenannte Bremswirkgruppe oder über eine Sicherheitsschleife.
- Zugdateneinsteller: Am Zugdateneinsteller werden alle relevanten Daten des Zuges eingegeben, wie z. B. Zuglänge, Bremsart, Bremshundertstel und maximale erlaubte Geschwindigkeit des Zuges. Bei Fahrzeugen mit MVB (wie z. B. bei den Lokomotiven der Reihe 185) erfolgt die Zugdateneingabe über das Driver Machine Interface (DMI).
- Modulare Führerraumanzeige (MFA): Die modulare Führerraumanzeige gibt dem Triebfahrzeugführer einen vollständigen Überblick über die vorausliegende Strecke. Die drei wesentlichen Führungsgrößen sind die (erlaubte) Sollgeschwindigkeit in Verbindung mit einer Zielgeschwindigkeit, die in einer Zielentfernung höchstens gefahren werden darf. Diese Werte sind im MFA analog und, bei neueren Baureihen, digital mittels Display angezeigt. Über Leuchtmelder im MFA werden dem Triebfahrzeugführer Status- oder Störmeldungen und weitere wichtige Informationen angezeigt, z. B. bei LZB-Übertragungsausfälle, LZB-Nothaltauftrag.
Bei Fahrzeugen mit MVB (z. B. Baureihe 185) ist das MFA durch ein DMI (Driver Machine Interface) ersetzt worden. Das DMI bietet eine größere Flexibilität hinsichtlich der Gestaltung.
Modelle
Das erste entwickelte Fahrzeuggerät wurde als LZB 100 bezeichnet. Da sich diese Technik nicht bewährte, begann ab 1980 die Entwicklung des mikroprozessorgesteuerten Fahrzeuggerätes LZB 80 durch das Konsortium LZB 80 der Firmen Siemens und SEL (später Alcatel und Thales, heute Hitachi Rail). Im Laufe der Zeit wurden vier Hardware-Generationen des Fahrzeuggerätes entwickelt:
- LZB 80/8: System auf Basis des Intel 8085
- LZB 80/16 CE: System auf Basis des Intel 80186
- LZB 80/16 CE MVB: System auf Basis des Intel 80386
- LZB 80E: System mit MVB auf Basis des Intel Pentium M bzw. Celeron M
1997 mit Bestellung der TRAXX F140 AC-Lokomotiven, begann bei Bombardier die Entwicklung des EBICAB-Systems, welches 2003 die Zulassung für die LZB 80 Betriebserprobung erhielt.
Daneben wurden auch LZB 80-Systeme als Specific Transmission Module (STM) von Thales und Siemens entwickelt.
Überblick über die Signalisierung
Neben den Führungsgrößen Soll- und Zielgeschwindigkeit sowie Zielentfernung können per LZB auch weitere Aufträge übertragen werden:
- LZB-Endeverfahren: Frühestens 1700 m vor Ende der LZB muss der Triebfahrzeugführer das vorausliegende Ende der Linienzugbeeinflussung quittieren und bestätigen, dass er ab sofort wieder auf die ortsfesten Signale und die Geschwindigkeiten des Fahrplans achtet. Ein gelber Leuchtmelder Ende signalisiert das Ende der LZB-Führung nach Ablauf der Zielentfernung.
- LZB-Ersatzauftrag: Bei Störungen kann der Fahrdienstleiter einen Ersatzauftrag zur Weiterfahrt an einem LZB-Halt geben. Im Führerstand leuchtet der Leuchtmelder E/40, Soll- und Zielgeschwindigkeit werden auf 40 km/h beschränkt, die Zielentfernung entspricht der Gültigkeit des Ersatzauftrages.
- LZB-Vorsichtauftrag: Der Fahrdienstleiter kann ein Fahren auf Sicht auch per LZB anordnen. Im Führerraum blinkt dann der Leuchtmelder V/40, der nach Quittierung durch den Lokführer in ein Ruhelicht übergeht. Die Zielentfernung und Zielgeschwindigkeit werden nach der Quittierung durch den Tf dunkelgeschaltet und Vsoll zeigt 40 km/h. Ca 50 Meter nach Vorbeifahrt an der LZB-Blockstelle erscheinen die neuen Führungsgrößen mit Zielentfernung und Zielgeschwindigkeit. Der Auftrag, auf Sicht zu fahren, gilt allerdings bis 400 Meter nach dem folgenden Hauptsignal.
- Für die 2002 eröffnete Neubaustrecke Köln–Rhein/Main wurde eine selektive Herabsetzung der Höchstgeschwindigkeit seitenwindempfindlicher Fahrzeuge eingeführt. Nachdem sich die eingesetzten ICE 3 im Regelbetrieb als weniger seitenwindempfindlich als angenommen erwiesen, wird diese Funktionalität im Regelbetrieb nicht mehr genutzt.
- Zur Inbetriebnahme der ersten Neubaustrecken-Abschnitte standen noch nicht genügend druckertüchtigte Fahrzeuge zur Verfügung. Fahrzeuge ohne Druckschutz wurden dabei von der LZB durch eine Einstellung am Zugdatensteller erkannt, die Höchstgeschwindigkeit des Zuges in der Folge auf 180 km/h beschränkt. Diese Option ist heute nicht mehr relevant.
- Weitere Aufträge sind: LZB-Fahrt, LZB-Halt, LZB-Gegengleisfahrauftrag, LZB-Nothalt (nicht bei CIR-ELKE), LZB-Auftrag Stromabnehmer senken, LZB-Nachfahrauftrag (nur bei CIR-ELKE).
Zusätzliche Funktionen
Über die LZB können auch automatisch die Heraufsetzung der Oberstrombegrenzung (maximal zugelassene Stromaufnahme) des Zuges sowie die Freigabe der Wirbelstrombremse auf Neubaustrecken Köln–Rhein/Main und Nürnberg–Ingolstadt für Betriebsbremsungen angezeigt werden. Auf den Ausbaustrecken Berlin–Leipzig und Berlin–Hamburg wird das Auslegen des Hauptschalters an Schutzstrecken ebenfalls über die LZB angesteuert (Signale El 1 bzw. El 2).
Untersucht wurde eine Ergänzung der LZB, um auf den Schnellfahrstrecken Hannover–Würzburg und Mannheim–Stuttgart Begegnungen von Personen- und Güterzügen in Tunneln sicher ausschließen zu können (Tunnelbegegnungsverbot). Damit könnte insbesondere die zulässige Höchstgeschwindigkeit in Tunneln von 250 auf 280 km/h angehoben werden. Zwischen Güter- und Personenzügen würde dabei ausgehend von der Bremsarteinstellung am LZB-Fahrzeugrechner unterschieden werden. Signale vor Tunneleinfahrten würden dabei die Funktion von sogenannten Gate-Signalen übernehmen, um Zugbegegnungen von Personen- und Güterzügen in Tunneln zu verhindern.
In den Jahren 1976 und 1980 fanden auf der LZB-Versuchsstrecke Baden–Koblenz Versuchsfahrten für Automatic Train Operation (ATO) statt. In Spanien gab es zwischen 1977 und 1979 zwischen Madrid-Atocha und Pinar de las Rozas ATO-Fahrten im fahrplanmäßigen Dienst mit Fahrgästen. Die Entwicklung wurde aus Kostengründen sowie wegen der Einführung von ETCS eingestellt.
Nicht umgesetzte Funktionen
Weitere Überlegungen zur Erweiterung der LZB-Funktionalität wurden nicht umgesetzt:
- Die Gesamtkonzeption der LZB sah die Möglichkeit einer späteren Einbeziehung von Aufgaben einer zentralen Betriebslenkung und automatischer Zuglenkung vor. Überlegt wurde auch, bei dichter Streckenbelegung dispositiv niedrigere Geschwindigkeiten an die Fahrzeuge zu signalisieren, um einen flüssigeren, energiesparenden Betrieb zu unterstützen.
- Überlegt wurde, beim Ziehen der Notbremse in einem Abschnitt mit Notbremsüberbrückung per LZB automatisch eine 60-km/h-Langsamfahrstelle am Ende dieses Abschnitts einzurichten. Diese Option war Ende der 1980er Jahre zum Einsatz auf den vor Eröffnung stehenden Neubaustrecken geplant, wurde aber nicht umgesetzt.
- Eine Option sah vor, die Höchstgeschwindigkeit, mit der sich Güter- und Personenzüge in Tunneln begegnen dürfen, zu beschränken. Dabei wäre eine bewegliche Langsamfahrstelle von definierter Länge für die Güterzüge eingerichtet worden. Da Zugbegegnungen von Güter- und Personenzügen in den Tunneln der Schnellfahrstrecken fahrplanmäßig ausgeschlossen werden, fand diese Option keine Umsetzung.
Funktionsweise
Ortung
Wie schon oben beschrieben werden die Linienleiter nach 100 ± 5 Metern gekreuzt, d. h. der in der Mitte verlegte Linienleiter wird mit dem am Schienenfuß verlegten Linienleiter vertauscht. Zwei Kreuzungsstellen begrenzen in der LZB einen Fahrort, im Folgenden Grobort genannt. Groborte werden in Zählrichtung von 1 beginnend aufwärts gezählt, gegen Zählrichtung von −1 (255) abwärts. Je Schleifenbereich sind maximal 127 Groborte möglich, die in Zählrichtung die Nummern 1 bis 127, gegen Zählrichtung die Nummern −1 (255) bis −127 (129) haben.
Das Fahrzeuggerät unterteilt über die Wegsensorik die Groborte nochmals in 8 Feinorte (0 bis 7) mit einer Länge von 12,5 Metern. Um Toleranzen in der Wegsensorik und bei der Linienleiterverlegung auszugleichen, nutzt das Fahrzeuggerät die Phasensprünge der Kreuzungsstellen für die Fahrortzählung. Mit Erkennen der Kreuzungsstelle wird der Feinortzähler auf 0 gesetzt und der Grobortzähler entsprechend der Fahrrichtung weitergezählt. Der in Zählrichtung letzte Feinort wird entsprechend verlängert oder verkürzt.
Um Messfehler durch Radabnutzung, Gleiten, Schlupf und Schleudern zu vermeiden, wurden bei der Entwicklung der LZB verschiedene Ansätze untersucht. Empfohlen wurde eine Kombination von Dopplerradar, elektro-optischer Erfassung von Unregelmäßigen von Oberflächen oder Zählung der Radimpulse, jeweils kombiniert mit Erfassung der Phasensprünge. Im Gegensatz zur Odometrie von ETCS ist die Weg- und Geschwindigkeitsmessung der LZB-Fahrzeugeinrichtung vergleichsweise einfach und kommt mit einem Wegimpulsgeber und einem wartungsfreien Beschleunigungsmesser aus. Sie musste allerdings zur Steigerung der Betriebssicherheit insbesondere im Geschwindigkeitsbereich oberhalb 200 km/h nachträglich verbessert werden: Ab 1992 wurden die Fahrzeuggeräte mit zusätzlichen Ortungsrechnern ergänzt. In der damaligen Hardware-Generation LZB 80/8 waren an der Ortung sogenannte Teilwegrechner, die zentrale Logik sowie die Linienleiterempfänger beteiligt. Diese Komponenten kommunizierten untereinander mit einem festen Takt von etwa 70 Millisekunden. Alleine durch diese Taktung konnte sich im ungünstigsten Fall eine Ortungsungenauigkeit von 486 cm ergeben. Die Ortungsrechner verbesserten dies, indem ihnen die Signale der Wegimpulsgeber sowie vom Linienleiterempfänger das noch frequenzmodulierte Originalsignal aus dem Linienleiter digital zur Verfügung gestellt wurde. Durch zeitlichen Vergleich der Signale von den verschiedenen Fahrzeugantennen konnten die Ortungsrechner eine von den Wegimpulsgebern an den Radsätzen unabhängige Geschwindigkeitsmessung vornehmen. Diesen Messwert verglichen sie mit dem Messwert der Wegimpulsgeber an den Radsätzen. Als Ergebnisse lieferten die Ortungsrechner an die zentrale Logik einen Korrekturwert für die Wegmessung sowie eine Bewertung der erkannten Kreuzungsstelle des Linienleiters. Abweichungen von mehr als 20 % zwischen den Messungen der Wegimpulsgeber und der Ortungsrechner sind nur plausibel, falls die Kreuzungsstelle des Linienleiters einen Bereichskennungswechsel darstellt. Ob ein Bereichskennungswechsel vorliegt, muss die zentrale Logik ermitteln. Falls kein Bereichskennungswechsel vorliegt, dann wurde eine Pseudo-Kreuzungsstelle erkannt, die nicht zur Ortung herangezogen werden darf. Durch die nachgerüsteten Ortungsrechner sank die rechnerische Ortungsungenauigkeit bis auf etwa 5 cm.
Aufnahme in die LZB
Voraussetzung für die Aufnahme in die LZB ist eine funktionsbereite LZB-Fahrzeugausrüstung. Ferner müssen gültige Zugdaten (Bremsart, Bremsvermögen in Bremshundertsteln, Zuglänge, Zughöchstgeschwindigkeit) am Zugdateneinsteller eingegeben worden sein.
Fährt ein entsprechender Zug in einen mit Linienleiter ausgerüsteten Bereich, wird er nur dann in die LZB-Führung aufgenommen, wenn der Fahrzeugrechner einen Wechsel der Bereichskennung (BKW) erkennt. An definierten Einfahrstellen wird der Wechsel der Bereichskennung durch Voreinstellschleifen vorbereitet. In den von Anfangsgeräten gespeisten Voreinstellschleifen werden fest parametrierte Voreinstelltelegramme übertragen, die die notwendigen Informationen (Fahrortnummer, Fahrtrichtung, Übergang zum Linienleiter am 50- oder 100-m-Punkt) des Einfahrortes übermitteln. Mit dem Erreichen des eigentlichen LZB-Bereichs empfängt das Fahrzeug die Aufruftelegramme der Zentrale für den Einfahrort und antwortet mit dem angeforderten Rückmeldetelegramm. Daraufhin beginnt die Zentrale, Kommandotelegramme an das Fahrzeug zu senden. Je nach örtlichen Verhältnissen wird die Anzeige im MFA mit dem Passieren des nächsten Signales oder des BKWs am Zugschluss hell geschaltet.
Fährt ein Fahrzeug, ohne eine Voreinstellschleife zu passieren, in einen LZB-Bereich, so erfolgt die Aufnahme in die LZB erst hinter dem nächsten Bereichskennzeichenwechsel (BKW mit Grundstellung). Das Fahrzeuggerät empfängt die Aufruftelegramme der Zentrale, es kann wegen der fehlenden Ortungsinformation jedoch nicht antworten. Mit Überfahren des BKWs empfängt das Fahrzeuggerät Aufruftelegramme mit geänderter Bereichskennung. Darauf wird im Fahrzeuggerät der Fahrortzähler zurückgesetzt (auf 1 bei Fahrt in Zählrichtung / −1 bei Fahrt gegen Zählrichtung) und die ortsfesten Aufruftelegramme des am BKW befindlichen Einfahrortes werden beantwortet. Die Aufnahme in die LZB erfolgt dann wie oben beschrieben.
Betrieb
Im Betrieb sendet die Zentrale Aufruftelegramme mit den Führungsgrößen (Bereichskennung, Fahrortnummer, Fahrtrichtung, Bremskurve und den Zielinformationen) an das Fahrzeug. Das Fahrzeug übermittelt im Antworttelegramm seine Zugdaten (Fahrortquittung, Bremscharakter, Feinort und Geschwindigkeit). Aus den gemeldeten Fahrzeugdaten, dem vom Stellwerk übermittelten Streckenzustand (Weichen-/Signalstellungen) und den in der Zentrale hinterlegten Streckenprofilen ermittelt die Zentrale die Fahrkommandos und übermittelt diese mit dem nächsten Aufruftelegramm an das Fahrzeug. Hier werden diese im Führerstand signalisiert. Jeder Zug wird, abhängig von der Anzahl der LZB-geführten Züge, zwei- bis fünfmal pro Sekunde aufgerufen.
Erkennt das Fahrzeuggerät eine oder zwei Kreuzungsstellen nicht, wird über die Wegsensorik am 100-m-Punkt eine Kreuzungsstelle simuliert. Wird die darauffolgende Kreuzungsstelle erkannt, kann unter LZB-Führung weitergefahren werden. Werden mehr als drei hintereinanderliegende Kreuzungsstellen nicht erkannt, sind also zwei Kurzschleifen in Folge gestört, fällt das Fahrzeug aus der LZB-Führung.
Aufgrund der begrenzten Leistungsfähigkeit früherer LZB-Fahrzeuggeräte wird die Bremskurve bei der LZB bis heute in der Streckenzentrale berechnet und auf das Fahrzeug in Form einer Codenummer und einem standardisierten Bremskurven-Segment übertragen.
Triebfahrzeuge und Steuerwagen verfügen für den LZB-Betrieb über eine eindeutig zugeordnete Fahrzeugnummer.
Ermittlung der Soll-Geschwindigkeit
Die wesentliche Aufgabe der LZB ist die Vorgabe und Überwachung der zulässigen Geschwindigkeit. Dazu übermittelt die Streckenzentrale eine Führungsgröße XG und die zugrundeliegende Bremsparabel an das Fahrzeug. Die Führungsgröße kennzeichnet den Bremsweg bis zu einem Haltepunkt. Im Falle eines Geschwindigkeitswechsels kann dieser Haltepunkt auch fiktiv sein. Aus der Führungsgröße (XG) und der Bremsverzögerung (b) kann das Fahrzeug unter Berücksichtigung des zurückgelegten Weges (s) kontinuierlich die Sollgeschwindigkeit (in m/s) berechnen:
Im Diagramm ist der Wechsel der zulässigen Höchstgeschwindigkeit (hier von 300 km/h auf 200 km/h) und das Bremsen bis zum Halt dargestellt. Die Bremsparabel wird jeweils so gelegt, dass sie durch den einschränkenden Punkt des verläuft und am Haltepunkt endet.
Für die Bremsverzögerung b sind bei Linienzugbeeinflussungssystemen, die zum Standard ORE A46 kompatibel sind (in Deutschland die klassische L72, nicht jedoch L72 CE) feste Werte definiert
Sollwerte für die Bremsverzögerung b bei ORE-A46-konformen LZB | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bremskurvennummer (BRN) | A | B | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Sollbremsverzögerung | 0,08 m/s² | 0,14 m/s² | 0,20 m/s² | 0,26 m/s² | 0,32 m/s² | 0,38 m/s² | 0,44 m/s² | 0,50 m/s² | 0,56 m/s² | 0,63 m/s² | 0,70 m/s² | 0,77 m/s² |
Bremsverzögerung der Überwachungskurve | 0,12 m/s² | 0,21 m/s² | 0,30 m/s² | 0,39 m/s² | 0,48 m/s² | 0,57 m/s² | 0,66 m/s² | 0,75 m/s² | 0,84 m/s² | 0,95 m/s² | 1,05 m/s² | 1,16 m/s² |
Die an den Zug vorgebende Bremskurvennummer kann von der Zentrale je nach Streckentopographie während der Fahrt gewechselt werden. So fällt zum Beispiel eine deutsche L72-Zentrale bei Güterzügen in Bremsstellung G auf die besonders flache Bremskurve B zurück, wenn ein Gefälle von mehr als 6 Promille durchfahren werden soll.
Die LZB-Bremstafel (Bremsart R/P, 12,5 ‰ maßgebendes Gefälle) sieht bei einer Höchstgeschwindigkeit von 200 km/h einen Bremsweg zwischen 1600 und 2740 m vor (240 bzw. 140 Bremshundertstel [BrH]). Bei 250 km/h liegen die Bremswege zwischen 2790 m (240 BrH) und 5190 m (140 BrH), bei 280 km/h zwischen 3760 m und 7470 m.
Telegrammtypen (LZB-Variante L72)
Aufruftelegramm
Das Aufruftelegramm hat eine Länge von 83 Bit in 83,5 Zeitschritten, wobei zur Synchronisation das dritte Bit 1,5 Zeitschritte dauert. Ein Aufruftelegramm besteht aus:
- Synchronisierung (Sync-Kopf (1-0-1-0-1; 5,5 Zeitschritte), Startschritt (0-1-1; 3 Zeitschritte))
- Adresse (Bereichskennung (α…ε, A1…A3; 3 Bit) und Fahrortnummer (1–127, 255–129; 8 Bit))
- Sicherheitsinformationen (Fahrtrichtung (vorwärts/rückwärts, 1 Bit), Bremskurvenform/(Parabel; 2 Bit) und -nummer (1…10, A, B; 4 Bit))
- Bremsinformationen (Vormeldeweg (0…1550 m; 5 Bit), Führungsgröße XG (0…12 787 m; 10 Bit))
- Zielinformation (Entfernung (0…12 700 m; 7 Bit) und Zielgeschwindigkeit (0…300 km/h; 6 Bit))
- Anzeigeinformationen (Signal- (Nothalt, … 3 Bit) und Zusatzinformation (El 1, El 3; 5 Bit))
- Hilfsinformationen (Typ des angeforderten Rückmeldetelegramms (Rückmeldung 1…4; 2 Bit), Teil-/Ganzblock (1 Bit), verdeckte Langsamfahrstelle (ja/nein; 1 Bit), Telegrammschlusskennung (bin:01/bin:11; 2 Bit))
- Reserve 7 Bit
- Prüfsumme ((CRC; 8 Bit), ab dem sechsten Bit, Generatorpolynom )
Rückmeldetelegramme
Rückmeldetelegramme vom Fahrzeug zur Zentrale haben eine Länge von 41 Bit und sind mit einer 7-Bit-Prüfsumme gesichert (gebildet ab dem vierten Bit, Generatorpolynom ). Im Folgenden werden die Nutzinhalte aufgeführt:
- Telegrammtyp 1
-
- Telegrammtyp
- Fahrortquittung (Fahrzeugadressebestätigung)
- Bremscharakteristik (Bremsart und Bremsvermögen)
- Feinort innerhalb der 100-m-Abschnitte (0–87,5 m in 12,75-m-Schritten)
- Geschwindigkeit (0–315 km/h in 5-km/h-Schritten)
- Betriebs- und Diagnosemeldungen (insgesamt 28 möglich, z. B. Fahrgastnotbremse, LZB-Halt überfahren, Zwangsbremsung, Wartung erforderlich, …)
- Telegrammtyp 2
-
- Telegrammtyp
- Fahrortquittung
- Bremscharakter (Bremsart und Bremsvermögen)
- Feinort
- Maximale Geschwindigkeit des Zuges (0–310 km/h)
- Zuglänge (0–787,5 m in 12,75-m-Schritten)
- Telegrammtyp 3
-
- Telegrammtyp
- Kennzeichen der Bahnverwaltung
- Zugnummer
- Telegrammtyp 4
-
- Telegrammtyp
- Baureihe
- Seriennummer
- Zuglänge
Telegrammübertragung
Die Übertragung der Telegramme von der Zentrale Richtung Fahrzeug erfolgt mittels Frequenzmodulation einer Trägerfrequenz von 36 kHz mit einem Frequenzhub von ± 0,6 kHz. Die Übertragungsgeschwindigkeit beträgt dabei 1200 Baud. In der umgekehrten Übertragungsrichtung beträgt die Trägerfrequenz 56 kHz, der Frequenzhub ± 0,2 kHz und die Übertragungsgeschwindigkeit 600 Baud. In beiden Richtungen dauern die Telegramme also knapp 70 ms. Ein Zyklus aus Aufruftelegramm, Verarbeitung und Rückmeldetelegramm dauert 210 ms.
Neuere LZB-Versionen
Bei den LZB-Versionen LZB CE1 und LZB CE2 für CIR-ELKE wurden die Telegrammstruktur für die neuen Funktionen erweitert. Linienleiter, Schleifenstruktur und Rechner blieben unverändert. Schleifenlängen und Software mussten den neuen Aufgaben angepasst werden.
Ende einer LZB-Führung, Rückkehr/Übergang zur Signal-/PZB-Führung
Nähert sich ein Triebfahrzeug dem Ende eines mit Linienleiter ausgerüsteten Abschnittes, so wird dem Triebfahrzeugführer dies im Führerraum signalisiert. Nach der Quittierung dieses sogenannten Ende-Verfahrens fährt der Zug wieder signalgeführt und der Triebfahrzeugführer muss demzufolge wieder die Signale und die Geschwindigkeiten gemäß Buchfahrplan beachten.
Es gibt jedoch auch Störungsfälle, bei denen eine Entlassung aus der LZB während des Befahrens eines mit ihr ausgestatteten Abschnittes unplanmäßig passiert. Dies ist der Fall bei Störungen an der Fahrzeugausrüstung sowie bei sogenannten Übertragungsausfällen, die dann meistens auf kurzzeitige Aussetzer der Funkübertragung zwischen Linienleiter und Fahrzeugantenne oder Störungen an der Infrastruktur zurückzuführen sind. Die häufigste Störung ist der Ausfall einer Kurzschleife durch mechanische Unterbrechung des Linienleiters. Ein Übertragungsausfall wird dem Triebfahrzeugführer optisch und akustisch gemeldet, eine Schleifenstörung dem zuständigen Fahrdienstleiter.
In diesen Fällen läuft ein Notprogramm in der Fahrzeugeinrichtung ab. Bis zu drei nicht erkannte Kreuzungsstellen des Linienleiters werden vom Fahrzeuggerät nachgebildet, zumal vor dem Übertragungsausfall Zielentfernung, Zielgeschwindigkeit und momentan zulässige Geschwindigkeit bekannt waren. Wird die folgende Kreuzungsstelle wieder erkannt, kann der Zug die Fahrt ungestört fortsetzen. Wird die Übertragung nicht wiederhergestellt, wird dem Triebfahrzeugführer signalisiert, auf eine sogenannte Ausfallgeschwindkeit innerhalb eines sogenannten Ausfallweges abzubremsen. Diese Meldung muss vom Triebfahrzeugführer quittiert werden, ansonsten erfolgt eine Zwangsbremsung bis zum Stand. Die Größe dieser Ausfallgeschwindkeit und die Länge des Ausfallweges bestimmt die Fahrzeugeinrichtung aufgrund diverser Vorgaben durch die jeweils örtlich gegebene Situation. Verkehrt der Zug im Vollblockmodus, beträgt diese Geschwindigkeit 160 km/h. Nach deren Erreichung fährt der Zug signalgeführt unter Beachtung des Buchfahrplanes weiter. Ein im Teilblockmodus verkehrender Zug muss halten, weil die Deckung des vorliegenden Zuges durch die LZB-Blockstellen nicht mehr besteht.
Nach einem Halt wegen einer Störung der LZB erfolgt die Weiterfahrt per schriftlichem Befehl vom Fahrdienstleiter. Letzteres gilt grundsätzlich, ehe man weiterfahren kann, nachdem man unplanmäßig aus der LZB entlassen wurde und deswegen bis zum Stillstand abbremsen musste. Eine Wiederaufnahme in die LZB-Führung kann erst am folgenden Bereichskennungswechsel erfolgen, weil nur an dieser Stelle die Position des Zuges eindeutig bekannt ist. Bis zu dieser Wiederaufnahme empfängt das Fahrzeuggerät zwar die Aufruftelegramme der Streckenzentrale, antwortet jedoch nicht.
Mit LZB ausgerüstete Vollbahn-Strecken
Anfang 2006 waren europaweit 2920 Streckenkilometer mit LZB ausgerüstet oder in Ausrüstung. Rund 400 Streckenkilometer, in Deutschland, Österreich und Spanien, waren in Bau. In Deutschland waren 34 LZB-Zentralen (1580 Streckenkilometer) mit LZB L72 in Betrieb, weitere 5 Zentralen (ca. 155 km) mit LZB CE I sowie 11 Zentralen (515 km) mit LZB CE II. In Spanien waren elf L72-Zentralen mit etwa 530 Streckenkilometern in Betrieb, in Österreich drei LZB-Zentralen mit ca. 140 km. Fahrzeugseitig waren bei der Deutschen Bahn etwa 2600 Fahrzeuge mit LZB, durch das Konsortium LZB 80 der Firmen Alcatel TSD und Siemens, ausgerüstet.
Deutschland (DB)
Auf dem Netz der DB war die LZB in der Anfangszeit des Hochgeschwindigkeitsverkehrs die Grundvoraussetzung für einen Betrieb mit mehr als 160 km/h, sofern die Streckenverhältnisse (Zustand von Oberbau, Gleisen, Oberleitung u. a.) diese Geschwindigkeit zulassen.
Folgende Ausbau- und Bestandsstrecken und Neubaustrecken der Deutschen Bahn sind (Stand 2014) mit LZB ausgerüstet:
VzG Nr. | Bahnstrecke | Verlauf und Kilometrierung | Streckenzentrale | Streckenlänge | vmax | Bemerkungen |
---|---|---|---|---|---|---|
1700 | Hannover – Minden | Hannover Hbf (km 4,4) – Wunstorf (km 20,4) | Stadthagen | 16,0 km | 200 | |
1700 | Hannover – Minden | Haste (km 29,2) – Bückeburg (km 53,4) | Stadthagen | 24,2 km | 200 | |
1700 | Bielefeld – Hamm | Brackwede (km 114,5) – Heessen (km 174,3) | Rheda-Wiedenbrück | 59,8 km | 200 | |
1710 | Hannover – Celle | Hannover Hbf (km 3,9) – Celle (km 40,8) | Celle | 36,9 km | 200 | Streckenwechsel mit Kilometersprung in Celle zu 1720 |
1720 | Lehrte – Hamburg-Harburg | Celle (km 43,6) – Hamburg-Harburg (km 166,4) | Celle • Lüneburg | 122,8 km | 200 | Streckenwechsel mit Kilometersprung in Celle zu 1710 |
1733 | Hannover – Würzburg | Hannover Hbf (km 4,2) – Würzburg Hbf (km 326,6) | Orxhausen • Göttingen • Kassel-Wilhelmshöhe • Kirchheim (Hessen) • Fulda • Burgsinn • Würzburg | 322,4 km | 280 | Die Zentrale Orxhausen (Abschnitt Hannover–Göttingen) wurde auf CIR-ELKE migriert. |
1760 | Paderborn – Soest | Paderborn Hbf (125,1) – Soest (180,8) | Soest | 55,7 km | 200 | Streckenwechsel mit Kilometersprung in Soest zu 2930 |
1956 | Weddeler Schleife | Sülfeld (km 18,8) – Fallersleben (km 24,2) | Fallersleben 2 | 5,4 km | 160 | Streckenwechsel mit Kilometersprung in Fallersleben zu 6107 |
2200 | Münster – Osnabrück | Münster (km 68,5) – Lengerich (km 101,6) | Lengerich | 33,1 km | 200 | |
2200 | Osnabrück – Bremen | Bohmte (km 139,7) – Bremen Gabelung Abzw. (km 231,1) | Bohmte • Kirchweyhe | 91,4 km | 200 | |
2200 | Bremen – Hamburg | Sagehorn (km 253,9) – Buchholz (Nordheide) (km 320,0) | Rotenburg • Buchholz | 66,1 km | 200 | |
2600 | Köln – Aachen | Köln Hbf (km 1,9) – Düren (km 41,1) | Köln-Ehrenfeld | 39,2 km | 250 | Die Strecke Köln – Düren ist mit der erweiterten Linienzugbeeinflussung CIR-ELKE ausgestattet. |
2650 | Köln – Duisburg | Leverkusen-Mitte (km 6,7) – Düsseldorf Hbf (km 37,3) | Düsseldorf Hbf | 30,6 km | 200 | Die Zentrale Düsseldorf wurde auf CIR-ELKE migriert. |
2650 | Köln – Duisburg | Düsseldorf Hbf (km 40,1) – Duisburg Hbf (km 62,2) | Düsseldorf Hbf | 22,1 km | 200 | Die Zentrale Düsseldorf wurde auf CIR-ELKE migriert. |
2650 | Dortmund – Hamm | Dortmund (km 120,4) – Nordbögge (km 143,3) | Kamen | 22,9 km | 200 | |
2690 | Köln – Frankfurt (Main) | Köln-Steinstr. Abzw. (km 6,8) – Frankfurt Flugh. Fernbf. (km 172,6) | Troisdorf • Montabaur 1/2 • Weilbach | 165,8 km | 300 | Die Strecke Köln – Rhein/Main ist mit der erweiterten Linienzugbeeinflussung CIR-ELKE ausgestattet. |
2930 | Soest – Hamm | Soest (km 111,5) – Hamm (Westf) (km 135,6) | Soest | 24,1 km | 200 | Streckenwechsel mit Kilometersprung in Soest zu 1760 |
3600 | Frankfurt (Main) – Fulda | Hanau (km 24,7) – Hailer-Meerholz (km 40,4) | Gelnhausen | 15,7 km | 200 | |
3656 | Kurve Zeppelinheim | Frankfurt Flughafen Fernbahnhof (km 0,0) – Zeppelinheim (km 3,9) | Weilbach | 3,9 km | 160 | |
3677 | Frankfurt (Main) – Fulda | Hanau (km 24,7) – Hailer-Meerholz (km 40,4) | Gelnhausen | 15,7 km | 200 | |
ehemals: 4010 | LZB wurde im Zuge der „Generalsanierung“ im 2. Halbjahr 2024 zurückgebaut und durch ETCS Level 2 ersetzt | |||||
4020 | Mannheim – Karlsruhe | Waghäusel-Saalbach Abzw. (km 31,7) – Karlsruhe Hbf (km 59,7) | Hockenheim 2 | 28,0 km | 200 | Ab Waghäusel-Saalbach in Richtung Mannheim, weiter über Strecke 4080 |
4080 | Mannheim – Stuttgart | Mannheim Hbf (km 2,1) – Stuttgart-Zuffenhausen (km 99,5) | Hockenheim 1 • Vaihingen (Enz) | 97,6 km | 280 | |
4280 | Karlsruhe – Basel (CH) | Baden-Baden (km 102,2) – Offenburg (km 145,5) | Achern • Offenburg | 43,3 km | 250 | Die Strecke Baden-Baden – Offenburg ist mit der erweiterten Linienzugbeeinflussung CIR-ELKE ausgestattet. |
4000 | Karlsruhe – Basel (CH) | Offenburg (km 145,5) – Basel Bad Bf (km 269,8) | Offenburg • Kenzingen • Leutersberg • Buggingen • Weil am Rhein | 124,3 km | 160 | Die Strecke Offenburg – Basel ist mit der erweiterten Linienzugbeeinflussung CIR-ELKE ausgestattet. Gefahren wird auf diesem Abschnitt maximal 160 km/h. |
4280 | Karlsruhe – Basel (CH) | Katzenbergtunnel (km 245,4 bis 254,8 km) | Weil am Rhein | 9,4 km | 250 | Der Katzenbergtunnel ist mit der erweiterten Linienzugbeeinflussung CIR-ELKE ausgestattet. |
4312 | Güterumgehungsbahn Freiburg | Abzw Gundelfingen (km 0,0) – Freiburg Gbf (km 2,7) | Leutersberg | 2,7 km | 100 | CIR-ELKE |
4312 | Güterumgehungsbahn Freiburg | Freiburg Süd (km 8,4) – Abzw Leutersberg (km 11,1) | Leutersberg | 2,7 km | 100 | CIR-ELKE |
5216 | Nantenbacher Kurve | Abzw Nantenbach (km 0,0) – Rohrbach (km 10,7) | Würzburg | 10,7 km | 200 | Die LZB-Zentrale Würzburg wurde 2018 auf CIR-ELKE hochgerüstet. |
5300 | Augsburg – Donauwörth | Gersthofen (km 5,1) – Donauwörth (km 39,7) | Augsburg Hbf | 34,6 km | 200 | Die LZB-Zentrale Augsburg wurde 2018 auf CIR-ELKE hochgerüstet. |
5302 | Augsburg – Ulm | Diedorf (Schwab.) (km 8,6) – Dinkelscherben (km 27,8) | Dinkelscherben | 19,2 km | 200 | Die LZB-Zentrale Dinkelscherben ist mit der erweiterten Linienzugbeeinflussung CIR-ELKE ausgestattet. |
5501 | München–Treuchtlingen | München-Obermenzing Abzw. (km 6,9) – Petershausen (km 38,7) | Petershausen | 31,8 km | 200 | Bis 2014 sollte ein weiterer Abschnitt (Kilometer 38,400 bis 62,100) mit LZB ausgerüstet werden (Stand: 2009), 2025 schrieb die DB eine Verlängerung der LZB-Ausrüstung von km 38,9 bis 59,5 aus |
5503 | München – Augsburg | Olching (km 14,2) – Augsburg Bft Haunstetter Straße (km 60,2) | Mering | 46,0 km | 230 | Die LZB-Zentrale Mering ist mit der erweiterten Linienzugbeeinflussung CIR-ELKE ausgestattet. |
5505 | München Donnersbergerbrücke – Abzw Heimeranplatz | München-Donnersbergerbrücke (km 1,0) – Abzw Heimeranplatz (km 2,9) | München Donnersbergerbrücke | 1,9 km | 90 | Streckenwechsel in München Donnersbergerbrücke zu 5540; Die S-Bahn-Stammstrecke München ist mit der erweiterten Linienzugbeeinflussung CIR-ELKE ausgestattet. |
5540 | Stammstrecke (S-Bahn München) | München-Pasing (km 6,3) – München Hbf (tief) (km 0,0) | München Donnersbergerbrücke | 6,3 km | 120 | Streckenwechsel in München Hbf zu 5550; Die S-Bahn-Stammstrecke München ist mit der erweiterten Linienzugbeeinflussung CIR-ELKE ausgestattet. |
5550 | Stammstrecke (S-Bahn München) | München Hbf (tief) (km 0,0) – München Ost Pbf (km 3,7) | München Donnersbergerbrücke | 3,7 km | 80 | Streckenwechsel in München Hbf zu 5540; Die S-Bahn-Stammstrecke München ist mit der erweiterten Linienzugbeeinflussung CIR-ELKE ausgestattet. |
5850 | Regensburg–Nürnberg | Nürnberg Hbf (km 98,0) – Nürnberg-Reichswald Abzw. (km 91,1) | Fischbach | 6,9 km | 160 | Streckenwechsel mit Kilometersprung in N-Reichswald zu 5934 |
5910 | Fürth – Würzburg | Neustadt (Aisch) (km 34,8) – Iphofen (km 62,7) | Neustadt (Aisch) | 27,9 km | 200 | Die Streckenzentrale wurde im Juni 2020 auf CIR-ELKE migriert |
5934 | Nürnberg–Ingolstadt | Nürnberg-Reichswald Abzw. (km 9,4) – Ingolstadt (km 88,7) | Fischbach • Kinding | 79,3 km | 300 | Streckenwechsel mit Kilometersprung in N-Reichswald von 5850 |
6100 | Berlin–Hamburg | Berlin-Albrechtshof (km 16,5) – Hamburg-Allermöhe (km 273,1) | Nauen • Glöwen • Wittenberge • Hagenow Land • Rothenburgsort | 256,6 km | 230 | Die Strecke Berlin – Hamburg ist mit der erweiterten Linienzugbeeinflussung CIR-ELKE ausgestattet. |
6105 | Priort–Nauen | Priort (km 78,3) – Wustermark (km 79,6) | Ruhleben | 1,3 km | 80 | Hochgerüstet auf CIR-ELKE; in Wustermark Übergang zur Strecke 6185 |
6107 | Lehrter Bahn | Wustermark Rbf (km 27,7) – Wustermark Awn (km 31,3) | Ruhleben | 3,6 km | 160 | Hochgerüstet auf CIR-ELKE |
6107 | Bindfelde – Stendal | Abzw Bindfelde (km 99,9) – Stendal (km 101,7) | Rathenow | 1,8 km | 160 | Streckenwechsel zu 6427/6428 |
6107 | Oebisfelde – Hannover | Oebisfelde (km 168,9) – Lehrte (km 238,5) | Fallersleben 1/2/3 | 69,6 km | 200 | Streckenwechsel in Oebisfelde zu 6185 |
6132 | Berlin – Bitterfeld | Berlin-Lichterfelde Ost (km 10,6) – Bitterfeld (km 132,1) | Ludwigsfelde • Jüterbog • Wittenberg • Bitterfeld | 121,5 km | 200 | Streckenwechsel mit Kilometersprung in Bitterfeld auf 6411 |
6185 | Berlin – Oebisfelde | Berlin-Spandau (km 111,0) – Oebisfelde (km 269,4) | Ruhleben • Rathenow • Fallersleben 1 | 158,4 km | 250 | Streckenwechsel in Oebisfelde zu 6107 |
6363 | Leipzig – Dresden | Leipzig-Sellerhausen (km 3,5) – Riesa (km 59,4) | Wurzen | 55,9 km | 200 | zurzeit außer Betrieb |
6399 | Oebisfelde – Fallersleben | Vorsfelde (km 7,3) – Sülfeld (km 20,0) | Fallersleben 2 | 12,7 km | 160 | |
6401 | Bahnhof Wittenberge | Wittenberge (km 53,3) – Streckenende (km 54,4) | Wittenberge | 1,1 km | 80 | Streckenwechsel zu 6100 |
6411 | Bitterfeld – Leipzig | Bitterfeld (km 49,0) – Leipzig Messe (km 72,3) | Bitterfeld | 23,3 km | 200 | Streckenwechsel mit Kilometersprung in Bitterfeld auf 6132 |
6427 | Staffelde – Bindfelde | Abzw Staffelde (km 0,0) – Abzw Bindfelde (km 1,2) | Rathenow | 1,2 km | 130 | Streckenwechsel zu 6185 |
6428 | Staffelde – Bindfelde | Abzw Staffelde (km 0,0) – Abzw Bindfelde (km 2,4) | Rathenow | 2,4 km | 130 | Streckenwechsel zu 6185 |
6441 | Bahnhof Ludwigslust | Ludwigslust (km 29,9) – (km 32,0) | 2,1 km | 120 | Streckenwechsel zu 6100 |
Im Zuge der Zweiten Stammstrecke München soll die Linienzugbeeinflussung im Bahnhof München-Pasing und auf S-Bahn-Strecken westlich davon eingebaut werden. Der Baubeginn ist für 2024 geplant, die Inbetriebnahme soll spätestens zusammen mit der Zweiten Stammstrecke erfolgen.
S-Bahn München (DB)
Um eine Zugfolge von 90 Sekunden (einschließlich eines Puffers von 18 Sekunden) zu erreichen, war die Stammstrecke der S-Bahn München bei ihrer Inbetriebnahme im Jahr 1972 mit LZB ausgerüstet. Dabei war bis Ende der 1960er Jahre noch geplant, im Bremswegabstand (unter Nutzung der selbsttätigen Zugschlussüberwachung der Fahrzeuge) zu fahren. In einer Steuerzentrale sollte ein Rechner für jeden Zug anhand der Streckenbelegung die jeweils günstigste Fahrgeschwindigkeit errechnen und über den Linienleiter an das Führerstandsanzeigegerät übertragen, um die wirtschaftlichste Fahrweise zu erreichen. Ebenfalls sollte über die LZB der Leistungsbedarf geglättet werden, indem nicht viele Züge gleichzeitig anfahren. Für die S-Bahn München wurde die auf der Bahnstrecke München–Augsburg verwendete LZB-Technik, geringfügig modifiziert, übernommen. In einer zweiten Stufe sollte die LZB auf das gesamte S-Bahn-Netz ausgedehnt und für den Endausbau war ein vollautomatischer Betrieb mit selbsttätigen Zugfahrten und selbsttätiger Steuerung des Betriebs vorgesehen.
Diese LZB war technisch für eine Mindestzugfolgezeit von 90 Sekunden (40 Züge pro Stunde und Richtung) inklusive einer Toleranz von 20 % ausgelegt und wurde in den 1970er Jahren mehrmals verändert:
- Mit der 1972 eingebauten LZB wurde nur im Versuchsbetrieb gefahren. Als Mindestabstand zwischen dem Zugschluss des vorausfahrenden S-Bahnzugs und der Zugspitze des nachfolgenden S-Bahn-Zugs waren mindestens 12,5 Meter Toleranz des Zugschlusses + 25,0 Meter Durchrutschweg + 37,5 Meter Schutzabstand (insgesamt 75,0 Meter) vorgesehen. Die Linienleiterschleifen waren etwa alle 100 Meter zur Kalibrierung der Wegmessung gekreuzt, im Stationsbereich öfter mit je einer LZB-Kreuzungsstelle 6,25 Meter vor dem betrieblichen Sollhaltepunkt. Ferner erfolgte alle 12,5 Meter nochmals eine Feinortung am Rad. Jede Steuerstelle konnte höchstens neun Züge mit einer maximalen Übertragungsweite von 12,7 Kilometer ansteuern. Die Signalisierung sollte per Führerstandssignalisierung erfolgen, deren Zielpunkte sehr dicht gewählt und die Soll-Geschwindigkeit in 100-Meter-Schritten abgebildet werden konnten. Die Gleisfreimeldung war mittels automatischer Zugschlusskontrolle und der Feinortung alle 12,5 Meter per Übertragung der Abschnittsnummer an das LZB-Streckengerät vorgesehen; somit war eine Minimierung der Zugfolge nur unmittelbar zwischen zwei mit dieser LZB ausgerüsteten Zügen möglich.
- In den 1970er Jahren wurde die LZB von 1972 aufgrund der Nichtanwendbarkeit auf Nicht-LZB-Züge dahingehend modifiziert, dass jeder 210 Meter lange Bahnsteigabschnitt in zwei Gleisfreimeldeabschnitte unterteilt wurde, um ein Nachrücken eines Folgezuges nach Räumung des halben Bahnsteigbereichs zu ermöglichen – mit einer höheren Mindestzugfolgezeit als zuvor. Auch diese Modifizierung ging nicht in den Regelbetrieb.
- Ende der 1970er Jahre wurde die 1972 eingebaute und später modifizierte LZB schließlich ähnlich zur damaligen Fernbahn-LZB an das seit 1972 genutzte H/V-Signalsystem angepasst, das ursprünglich nur als Reservesignalsystem gedacht war. Im Regelbetrieb fuhren nur ein Teil der S-Bahn-Züge mit LZB, bis diese 1983 abgebaut wurde.
Aufgrund geringer Verfügbarkeit, des hohen Instandhaltungsaufwands und des Mangels betrieblichen Nutzens wurde dieses System 1983 außer Betrieb genommen und abgebaut. Durch Optimierungen am H/V-Signalsystem konnte auch ohne LZB-Einsatz ein Durchsatz von 24 Zügen pro Stunde erreicht werden.
Die LZB ging im Dezember 2004, auf Grundlage neuer Technik, wieder in Betrieb, um den Durchsatz von 24 auf 30 Züge pro Stunde und Richtung zu steigern, die technische Leistungsfähigkeit liegt bei 37,5 Zügen pro Stunde und Richtung. Seit 2018 werden weitere Triebzüge der Baureihe 420 mit LZB ausgerüstet.
Österreich (ÖBB)
Ab 1991 wurde die Westbahn, zunächst zwischen den Hauptbahnhöfen Linz und Wels, mit LZB ausgerüstet.
Bis 2030 sollen alle mit LZB ausgerüsteten Streckenabschnitte auf das europäisch einheitliche Zugbeeinflussungssystem European Train Control System umgerüstet werden. 2022 wurde der Streckenabschnitt Linz Hauptbahnhof–Attnang-Puchheim (km 190,5 – km 240,4) wegen Veralterung der im Stellwerk Wels verwendeten LZB-Version rückgebaut.
Aktuell in Betrieb befindliche mit LZB ausgerüstete Streckenabschnitte:
- St. Pölten Hbf–Linz Kleinmünchen (km 63,5 – km 183,3)
Schweiz (SBB)
In den 1970er Jahren wurden im Netz der Schweizerischen Bundesbahnen (SBB) die beiden Strecken Lavorgo–Bodio und Turgi–Koblenz versuchsweise mit Linienzugbeeinflussung ausgerüstet. Die eingesetzte LZB-Variante wurde als UIC-LZB bezeichnet. Die Versuche wurden 1981 abgeschlossen und der Entscheid gefällt, das System nicht weiter zu verfolgen. Es wurde geurteilt, dass das System zwar die Funktion erfülle, aber zu kostspielig sei, so dass es nur dort notwendig würde, wo das herkömmliche Signalsystem aufgrund der hohen Geschwindigkeiten nicht ausreichen würde. Es wurde darauf gesetzt, dass bis zum Bau der Neuen Haupttransversale (NHT) ein rechnergestütztes Zugsicherungssystem mit Kommunikation über Funk zur Verfügung stehen würde, was bei der Neubaustrecke Mattstetten–Rothrist mit der Anwendung von ETCS Level 2 tatsächlich der Fall war. In anderen Quellen wurde als Hauptziel der LZB-Versuche anstelle der Erhöhung der Fahrgeschwindigkeit die höhere Sicherheit des Eisenbahnbetriebes und die Verkürzung der Zugfolgezeiten genannt.
Ende 1971 hatten die SBB der Standard Telephon & Radio AG (STR) den Auftrag erteilt, die Gotthard-Südrampe zwischen Lavorgo (Standort der Streckenzentrale) und Bodio mit dem LZB-System L72 der SEL auszurüsten. Gleichzeitig erhielt die Brown Boveri AG den Auftrag, ein Fahrzeuggerät für die sechs Re 4/4II 11299 bis 11304 zu entwickeln, die 1973 abgeliefert wurden. Auch Regionalverkehrszüge RABDe 8/16 wurden ausgerüstet. Im September 1974 wurde das System erstmals getestet. Im Frühjahr 1975 begann der Versuchsbetrieb. Am 1. Juli 1976 wurden die ortsfesten Anlagen durch die SBB übernommen. Täglich verkehrten rund 15 Züge unter LZB-Führung über die Strecke. Dieses System berücksichtigte in der Bremswegberechnung bereits die Neigungsverhältnisse der Strecke und besaß vier als „virtuelle Blockstrecken“ bezeichnete Teilblöcke. Während das System weitgehend mit dem auf der Bahnstrecke Bremen–Hamburg eingesetzten System übereinstimmte, entschieden sich die SBB für ein anderes Verlegesystem, das der UIC-Norm A3 statt B3 entsprach.
Malaysia (KLIA Ekspres)
In Malaysia nutzt der regelspurige 56 km lange Flughafen-Express KLIA Ekspres das Linienleitersystem ZSL-90 für Geschwindigkeiten von bis zu 160 km/h.
Spanien (ADIF)
- Madrid – Córdoba – Sevilla (zwölf Zentralen/480 km). Die Strecke ist seit April 1992 in Betrieb. Die LZB soll 2025 durch ETCS Level 2 ersetzt werden
- Seit März 2004 ist auch der Endbahnhof Madrid-Atocha mit LZB ausgerüstet.
- Im November 2005 wurde ein Abzweig nach Toledo in Betrieb genommen (20 km).
- Seit 16. Dezember 2006 ist das Teilstück Córdoba–Antequera in Betrieb (zwei Zentralen/102 km). Dieses Teilstück gehört zur Strecke Córdoba–Málaga (drei Zentralen/154 km). Die dritte Zentrale ging Ende 2007 in Betrieb.
- S-Bahn Madrid, Linie C5 von Humanes über Atocha nach Móstoles (zwei Zentralen/45 km und 76 Triebzüge der Reihe 446). Der Betrieb erfolgt im ATO-Modus, die Züge werden von der LZB über die automatische Fahr- und Bremssteuerung (AFB) gesteuert und halten automatisch mit einer Toleranz von ±20 cm an den Bahnsteigen.
Spanien (Euskal Trenbide Sarea)
Die spanischen Schmalspurbahnen benutzen ein für deutsche Industriebahnen entwickeltes verwandtes System:
- Bilbao-Atxuri – Durango – Zarautz – Donostia-San Sebastián – Hendaye
- Bilbao-Deustu – Lezama
Linienförmige Zugbeeinflussung bei U-Bahnen und Stadtbahnen
LZB-Technik wird nicht nur bei Eisenbahnen eingesetzt, sondern auch bei U- und Stadtbahnen. Aufgrund der unterschiedlichen Anforderungen unterscheidet sich die verwendete Technik aber teilweise erheblich von den Vollbahnsystemen. Insbesondere bei den Kurzschleifensystemen LZB 500 und LZB 700 von Siemens lassen sich die unter Funktionsweise genannten Prinzipien nicht anwenden.
Hamburger Hochbahn
Die Hamburger Hochbahn (HHA) erprobte auf Streckenabschnitten der U1 als erstes Unternehmen im Deutschland den automatisierten Fahrbetrieb. Ziel waren Kosteneinsparungen und eine Verbesserung der Qualität. Nach der Ausrüstung der Strecke Ritterstraße–Trabrennbahn mit Linienleiter mit 30 m langen Schleifen fanden ab 1967 mit den zwei DT2-Einheiten 9388/9389 (AEG-Ausrüstung) und 9426/27 (Siemens-Ausrüstung) sowie kurze Zeit später auch mit dem DT3-Prototyp 9600/01/02 (je ein Führerstand mit AEG- und einer mit Siemens-Ausrüstung) Erprobungen statt. In den 1970er Jahren erfolgten auf dem dritten Gleis zwischen den Stationen Farmsen und Berne weitere Versuche (Projekt PUSH = Prozessrechnergesteuertes U-Bahn-Automatisierungs-System Hamburg). Schließlich fuhren vom 31. Oktober 1982 bis zum 8. Januar 1985 auf der zehn Kilometer langen Strecke zwischen den Stationen Volksdorf und Großhansdorf sechs auf LZB-Betrieb umgebaute DT3-Einheiten im regulären Fahrgastbetrieb. Danach wurde der automatisierte Betrieb wieder eingestellt. Die Hochbahn plant keine Wiedereinführung. Die seit Anfang der 1970er Jahre auf dem gesamten Netz verlegten Linienleiter werden zur Zugtelefonie verwendet.
Berliner U-Bahn
Die ersten Versuche mit Linienzugbeeinflussung auf der Berliner U-Bahn erfolgten bereits 1928 im Bahnhofsbereich Krumme Lanke bzw. 1958/1959 mit Tonfrequenz-Wechselstromschleifen.
Auf der Berliner U-Bahn-Linie U9 fuhr von 1976 bis 1993 ein Teil der Züge nach LZB. Entsprechende Versuchsfahrten wurden ab 1965 erfolgreich absolviert, beginnend mit dem kurzen Abschnitt zwischen der Kehranlage Zoologischer Garten und dem U-Bahnhof Spichernstraße. Ferner wurden bis 1998 weitere Versuche des „fahrerlosen Kehrens“ zum automatischen Fahrtrichtungswechsel der U-Bahn-Züge hinter den Endstationen durchgeführt. Auf der U9 kam das Kurzschleifensystem LZB 500 (in Berlin als LZB 501 bezeichnet) mit standardmäßig 64 m langen LZB-Schleifen zum Einsatz. Die Außerbetriebnahme der LZB erfolgte aus wirtschaftlichen Gründen, da die vorhandenen Signal- und Zugbeeinflussungssysteme zur Sicherstellung der dort erforderlichen Zugfolgezeiten als ausreichend erachtet wurden.
Weitere Versuche mit kontinuierlichen Zugbeeinflussungssystemen und automatischem Fahren fanden auf den Linien U2 (SelTrac), U4 (SelTrac) und U5 (STAR) statt, wobei STAR zur Datenübertragung die Funktechnik (Funkzugbeeinflussung) statt der Linienleiterschleifen nutzte.
Stadtbahn Düsseldorf, Duisburg, Krefeld, Meerbusch, Mülheim an der Ruhr
Die Tunnelstrecken auf den Stadtbahnen in Duisburg und zum Teil in Mülheim an der Ruhr sind mit dem Zugbeeinflussungssystem LZB L90 von Alcatel- bzw. SEL ausgerüstet. Es wird ein automatischer Fahrbetrieb mit Fahrer durchgeführt, der Fahrer betätigt hierbei zur Abfahrt eine Starttaste und überwacht während der Fahrt Fahrzeug und Strecke, ohne im Regelbetrieb in die Fahrzeugsteuerung einzugreifen.
Dasselbe Zugbeeinflussungssystem wurde auf der Oberflächenstrecke von Düsseldorf über Meerbusch nach Krefeld (zwischen den Haltestellen Düsseldorf-Lörick und Krefeld-Grundend) eingebaut und war ebenfalls auf der ersten und zweiten Stammstrecke der Stadtbahn Düsseldorf in Betrieb. Im Rahmen der Umstellung auf eine Punktförmige Zugbeeinflussung wurde die LZB in Düsseldorf nach und nach außer Betrieb genommen. Auf der Strecke nach Krefeld wurde das System am 12. März 2023 abgeschaltet. Die letzten LZB-Streckenabschnitte wurden am 17. Januar 2025 abgeschaltet, womit nun das gesamte Zugsicherungsnetz der Stadtbahn Düsseldorf auf eine Punktförmige Zugbeeinflussung umgerüstet worden ist.
Auch in Duisburg und Mülheim an der Ruhr läuft die Punktförmige Zugbeeinflussung bereits seit 2022 im Parallelbetrieb mit der LZB und diese geht voraussichtlich Ende 2025 außer Betrieb, sobald die letzten GT10NC-DU ausgemustert werden.
U-Bahn Wien
Auch in Wien ist, mit Ausnahme der Linie U6, das gesamte U-Bahn-Netz seit seiner Inbetriebnahme mit einer linienförmigen Zugbeeinflussung, dem Kurzschleifensystem LZB 500 von Siemens (LZB 503/513), ausgerüstet und bietet die Möglichkeit des automatischen Fahrens, bei der der Fahrer eine Überwachungsfunktion ausübt. Auf eine Rückfallebene mit konventionellen Lichtsignalen wurde in Wien verzichtet. Bei der Wiener U-Bahn werden Kurzschleifen mit einer Länge von 74 m eingesetzt. Die Linienleiterschleifen verlaufen bei der U-Bahn Wien nicht wie sonst üblich in Gleismitte und im Schienenfuß, sondern zweimal im Gleis außerhalb des Stopfbereiches. Dafür wurden besondere Betonschwellen mit eingearbeiteten Linienleiteraufnahmen entwickelt.
An beiden Endstationen der Wiener U4 – in Heiligenstadt seit 2000, in Hütteldorf seit 1990 – werden alle Züge automatisch gewendet, indem der Fahrer am Ankunftsbahnsteig aussteigt, per Schlüsselschalter die Automatikfahrten nacheinander anfordert, am Beginn des Abfahrtsbahnsteigs den Zug wieder übernimmt und entlang des Bahnsteigs zum entsprechenden Haltepunkt vorfährt. Letzteres ist nötig, weil im Gegensatz zu den Nürnberger U-Bahn-Linien U2 und U3 eine selbsttätige Gleisraumüberwachung im Bahnsteigbereich fehlt.
Aufgrund zufriedenstellender Ergebnisse wurde auch die Station Aspernstraße der U2 mit einer automatischen Wendeanlage ausgerüstet.
U-Bahn München
Das Netz der Münchner U-Bahn ist ebenso wie das in Wien bereits seit seiner Inbetriebnahme mit dem Kurzschleifensystem LZB 500 (LZB 502/512) ausgestattet. Es wurde um 2005 durch das Fahrzeuggerät M21 ersetzt.
Im Regelbetrieb wird tagsüber nach LZB gefahren. Abends ab 23 Uhr bis Betriebsschluss wird von Hand und unter Beachtung der ortsfesten Signale gefahren, damit die Fahrer im Handfahrbetrieb (sog. Fahren nach ortsfesten Signalen (FO)) geübt bleiben. Früher wurde von 21 Uhr sowie sonntags von Hand gefahren. Es ist dabei vorgeschrieben, dass jeder Fahrer eine bestimmte monatliche Anzahl an Fahrstunden nach ortsfesten Signalen erreichen muss.
Beim Fahren nach LZB bedient der Fahrer nach dem Aufstarten bzw. nach jeder Zugabfertigung gleichzeitig zwei Starttasten. Anschließend überwacht der Fahrer den Gleisraum, bedient die Türen, übernimmt die Zugabfertigung und steht für den Störungsfall bereit. Dabei kann der Fahrer sowohl manuell anhand der im Führerstand angezeigten Maximalgeschwindigkeit als auch mit Automatischer Fahr-Bremssteuerung (AFB) fahren; ortsfeste Signale sind in beiden LZB-Fahrweisen dunkelgeschaltet. Die zugnummernabhängige Umschaltung zwischen Fahren nach ortsfesten Signalen (FO) und Fahren nach LZB erfolgt stellwerksseitig, das heißt inzwischen per Fernsteuerung von der U-Bahn-Betriebsleitzentrale aus. Bei Störungen der Zugsicherung wird manuell auf Ersatzsignal gefahren.
Die Münchner U-Bahn ist standardmäßig mit 78 m langen LZB-Schleifen ausgestattet, die im Gefälle der Regelfahrtrichtung entsprechend verlängert werden. Dadurch wird zumindest in Regelfahrtrichtung der LZB-Standardbremsweg über stets drei LZB-Schleifen gewährleistet; eine weitere LZB-Schleife dient der sicheren Abstandshaltung. Dabei kann ein nachfolgender Zug auf bis zu 80 Meter auf einen an einem Bahnsteig stehenden oder aus dem Bahnsteig ausfahrenden Zug aufrücken. In der LZB können zusätzliche Haltepositionen festgelegt werden. Im Bereich der Bahnhöfe werden aufgrund der Bahnsteiglänge von 120 m die LZB-Schleifen so angeordnet, dass am jeweiligen Ausfahrsignal ein Durchrutschweg von 96 m in der Ebene resultiert.
Derzeit ist eine Automatisierung des Abstellens und Wendens von Leerzügen in Wendeanlagen mit Hilfe der LZB als Vorstufe zum vollautomatischen Betrieb in Planung.
U-Bahn Nürnberg
Bei der U-Bahn Nürnberg wird mit der Inbetriebnahme der Linie U3 ein vollautomatischer Betrieb ohne Fahrer realisiert. Die Züge der Baureihe DT3 fahren dabei auf Strecken, die mit linienförmiger Zugbeeinflussung ausgestattet sind, und besitzen keinen abgetrennten Führerstand mehr, sondern nur noch einen Notfahrstand. Das System wurde von Siemens und der Betreiberin VAG Verkehrs-Aktiengesellschaft Nürnberg gemeinsam entwickelt und sollte weltweit das erste sein, bei dem fahrerlose Züge und konventionelle Züge auf einem gemeinsamen Streckenabschnitt (der von der bestehenden Linie U2 und der neuen U3 genutzt wird) im Regelbetrieb verkehren. Anfangs fuhr in jedem Zug ein Kundenbetreuer mit, inzwischen verkehren die meisten Züge unbegleitet.
Nach mehrjährigen Verzögerungen wurde der abschließende dreimonatige Testbetrieb ohne Fahrgäste am 20. April 2008 erfolgreich abgeschlossen, die endgültige Betriebsgenehmigung der technischen Aufsichtsbehörde wurde am 30. April 2008 erteilt. In einem wenige Tage danach begonnenen stufenweisen Vorlaufbetrieb mit Fahrgästen wurde zunächst an Sonn- und Feiertagen, dann auch wochentags zu Schwachlastzeiten und schließlich täglich nach dem morgendlichen Berufsverkehr (in dem ein Vorlaufbetrieb aufgrund der zu dichten Zugfolge der U2 vor der Fahrplanumstellung nicht möglich war) gefahren. Die offizielle Eröffnung der U3 erfolgte am 14. Juni 2008 in Anwesenheit des bayrischen Ministerpräsidenten und des Bundesverkehrsministers, der Regelbetrieb begann mit der Fahrplanumstellung am 15. Juni 2008. Am 2. Januar 2010 wurde die Linie U2 ebenfalls auf automatischen Betrieb umgestellt.
Verwendet wird hier die am weitest entwickelte Version des Kurzschleifensystems LZB 500 von Siemens, die LZB 524 mit einer Schleifenlänge von standardmäßig 90 m. Als Besonderheit erfolgt auf den reinen U3-Strecken, wo keine fahrergeführten Züge verkehren, auch die Gleisfreimeldung über die LZB; die ortsfeste streckenseitige Gleisfreimeldung ist nur noch rudimentär als Rückfallebene vorhanden.
Außerdem werden über die Linienzugbeeinflussung auch nicht-sicherheitsrelevante Informationen des fahrerlosen Betriebs wie Aufträge zum Fahrtrichtungswechsel, das Zugziel und Fahraufträge übermittelt.
Stadtbahn London (DLR)
Die Docklands Light Railway im Osten Londons fährt seit ihrer Inbetriebnahme automatisch mit Zügen ohne Führerstand. Die Züge werden dabei von einem als Train Chief bezeichneten Mitarbeiter begleitet, der für das Schließen der Türen und das Erteilen des Abfahrbefehls zuständig ist, sich während der Fahrt aber hauptsächlich der Kundenbetreuung und Fahrscheinkontrolle widmet. Im Störungsfall können die Züge durch den Train Chief von einem Notführerstand von Hand gefahren werden. Die eingesetzte linienförmige Zugbeeinflussung ist das von Alcatel hergestellte und aus der für die Deutsche Bundesbahn entwickelten LZB von Standard Elektrik Lorenz (SEL) weiterentwickelte System SelTrac.
Europaweit genormtes Nachfolgesystem
2013 war geplant, die LZB im Netz der DB zwischen 2025 und 2030 sukzessive durch ETCS Level 2 zu ersetzen. Die streckenseitige Ausrüstung mit LZB-L72 wurde vom Hersteller Thales für 2012 abgekündigt. Bestehende Strecken wurden bis 2023 auf LZB-L72-CE (CIR-ELKE) umgestellt, als letzte am 14. November 2023 die Zentrale in Gelnhausen. Etwa 75 % der LZB-Strecken sollten eine Doppelausrüstung mit ETCS Level 2 erhalten. Fast alle LZB-Strecken sollten bis mindestens 2026 mit fahrzeugseitiger LZB nutzbar bleiben. Anschließend sollte die Streckenausrüstung der LZB schrittweise außer Betrieb genommen werden, wobei die letzten LZB-Strecken 2030 außer Betrieb gehen sollten, da auch der Hersteller die Systempflege für LZB-L72-CE nur bis maximal 2030 zusicherte. Im Rahmen der Konzentration des ETCS-Rollouts auf den Korridor A (Rotterdam–Genua) war die erste Doppelausrüstung LZB / ETCS für den Korridor Basel–Offenburg vorgesehen. Das bisherige Pilotprojekt hat ergeben, dass ETCS Level 2 alle betrieblichen Anforderungen des Systems LZB einschließlich der Hochleistungsblockfunktion übernehmen kann. Im Zuge der Umstellung von LZB auf ETCS werden voraussichtlich eine Reihe von bestehenden Stellwerken durch neue Elektronische oder Digitale Stellwerke ersetzt werden müssen.
Die LZB ist ein hauptsächlich auf deutsche Verhältnisse und Erfordernisse zugeschnittenes System. Im Zuge der Vereinheitlichung und Normung der europäischen Bahnsysteme wurde als einheitliches Zugbeeinflungssystem innerhalb der Europäischen Union ETCS vorgeschrieben, diese Entwicklung wird auch von der Schweiz als Binnenland innerhalb der EU mitgetragen. ETCS wird inzwischen an verschiedenen Strecken erprobt. Die LZB wird innerhalb von ETCS als Klasse-B-System geführt, für das ein genormtes Anpassungsmodul (Specific Transmission Module, STM) existiert, das den Betrieb von dafür ausgerüsteten ETCS-Fahrzeugen auf LZB-Strecken erlaubt. Ebenso ist die parallele Ausrüstung von Strecken mit ETCS und LZB möglich und zugelassen, wobei jedoch laut Norm ETCS die sicherungstechnische Führungsrolle übernehmen muss.
Bei einer Parallelausrüstung besteht die Möglichkeit, den ETCS-Einstieg (Anfangsbalisen) in Fahrtrichtung vor die LZB-Voreinstellschleife zu legen. Liegen die Anfangsbalisen hingegen in Fahrtrichtung hinter dem LZB-Beginn, wird die LZB-Datenübertragung bei Aufnahme in ETCS abgebrochen. Zur Vermeidung von Fehlermeldungen ist dabei eine CIR-ELKE-LZB-Zentrale mit speziellen Anpassungen erforderlich. Zum Übergang von ETCS auf LZB wird das ETCS-Fahrzeuggerät per Ankündigungsbalise zum Systemwechsel aufgefordert, für den Übergang von der LZB zu ETCS kommen Ankündigungs- oder Transitionsbalisen zum Einsatz. Neben dieser automatischen Transition ist auch ein manueller, vom Triebfahrzeugführer ausgelöster, Übergang zwischen den Zugbeeinflussungssystemen möglich. Während ein direkter Übergang von LZB zu ETCS Level 2 möglich ist, ist für den Übergang von ETCS Level 2 zu LZB ein Zwischenabschnitt mit PZB erforderlich.
In Spanien wurden um 2006 64 Triebzüge der Baureihen 102 und 103 mit ETCS-Fahrzeuggeräten ausgerüstet, in die die LZB als zusätzliches nationales Zugbeeinflussungssystem (STM) integriert ist.
Literatur
- Hermann Lagershausen: Die geschichtliche Entwicklung des Linienleiters. In: Eisenbahntechnische Rundschau. Band 22, Nr. 11, 1973, S. 423–434.
- DB Netz AG: Schienennetz-Nutzungsbedingungen
Auszug aus der Richtlinie 483: Zugbeeinflussungsanlagen bedienen- Modul 483.0201 (PDF; 174 kB), Linienförmige Zugbeeinflussungsanlagen bedienen; Allgemeiner Teil
- Modul 483.0202 (PDF; 679 kB), Linienförmige Zugbeeinflussungsanlagen bedienen; LZB-80-Fahrzeugeinrichtungen
Weblinks
- Beschreibung der LZB, Fotos des MFA
- Karte der mit Linienzugbeeinflussung ausgerüsteten Strecken (unvollständig) auf der OpenRailwayMap
Einzelnachweise
- DB Netz (Hrsg.): European Train Control System (ETCS) bei der DB Netz AG. Frankfurt am Main April 2014, S. 11–12 (PDF-Datei). PDF-Datei ( vom 14. Juni 2015 im Internet Archive)
- Infrastrukturzustands- und -entwicklungsbericht 2021. (PDF) Leistungs- und Finanzierungsvereinbarung. In: eba.bund.de. Deutsche Bahn, Mai 2022, S. 167, abgerufen am 5. Mai 2022.
- Alfred Braun: Aufstellen von Bremstafeln für Strecken mit Linienzugbeeinflussung. In: ZEVrail, Glasers Annalen. Band 112, Nr. 4, April 1988, ISSN 1618-8330, ZDB-ID 2072587-5, S. 108–118.
- Dieter Jaenichen, Norbert Rudolph, Thomas Weiss: LZB-Bremstafeln für Neigungen bis ± 40 ‰. Dresden 2001, S. 7, 42, 47 f.
- Alfred Braun: Die LZB-Bremstafeln für Güterzüge. In: Eisenbahn Ingenieur Kalender. Band 4, 1991, ISBN 3-87814-500-4, S. 275–282.
- Andreas Singer: Entwicklung und Erprobung von Bremskurven für den Hochgeschwindigkeitsverkehr mit Funkzugbeeinflussung (FZB). In: Tagungsband 3. Schienenfahrzeugtagung (= Dresden Rad Schiene). Band 3. Tetzlaff-Verlag, Dresden 1999.
- H. Arndt: Das Punkt- und Liniensystem der selbstständigen Zugbeeinflussung. In: Siemens-Zeitschrift. Hefte 9, 10 und 11, 1928, S. 524–530/599–608/650–657 ZDB-ID 211624-8.
- Friedrich Bähker: Die Linienzugbeeinflussung und ihre Aufgabe bei der automatischen Steuerung von Schnellstzügen. In: Elektrotechnische Zeitschrift. Heft 11/1964, S. 329–333.
- Birgit Milius: 50 Jahre Linienzugbeeinflussung in Deutschland. In: Signal + Draht. Heft 9, 2015, S. 6–8.
- Heinz Rummert: Leistungssteigerung von Verkehrswesen durch fernmeldetechnische Hilfsmittel. Technische Hochschule Carolo-Wilhelmina zu Braunschweig, 1956
- Peter Form: Die Zug- und Streckensicherung von Eisenbahnen durch impulsverarbeitende Systeme. Technische Hochschule Carolo-Wilhelmina zu Braunschweig, 1964.
- Wilhelm Köth: Die Linienzugbeeinflussung. Teil II: Praktische Anwendungen. In: Elsners Taschenbuch der Eisenbahntechnik. 1975, ZDB-ID 242938-X, S. 149–199.
- Die Linienzugbeeinflussung. In: Signal + Draht. Band 58, Nr. 7, 1966, S. 119.
- Wilh. Köth: Einrichtungen der Linienzugbeeinflussung auf der Schnellfahrstrecke München – Augsburg. In: Signal + Draht. Band 57, Nr. 11, 1965, S. 187–196.
- Ernst Kockelkorn: Auswirkungen der neuen Eisenbahn-Bau- und Betriebsordnung (EBO) auf den Bahnbetrieb. In: Die Bundesbahn. 13/14, 1967, S. 445–452.
- Carl Lüddecke: Die Linienzugbeeinflussung für Schnellfahrten der Deutschen Bundesbahn. In: Signal + Draht. 57, Nr. 2, 1965, S. 17–29.
- Ernst Kilb: Grundsätzliches zur selbsttätigen Steuerung von Schnellstfahrzeugen. In: Die Bundesbahn. 1963, S. 59–68.
- Karl-Heinz Suwe: „Führerraumsignalisierung mit der LZB“. In: Eisenbahntechnische Rundschau. 38, Heft 7/8, 1989, S. 445–451.
- Walter Schmitz: Linienzugbeeinflussung (LZB). In: Signal + Draht. Band 61, Nr. 2. Tetzlaff Verlag, Frankfurt 1969, S. 17–23.
- Ernst Kilb: Versuche an Triebfahrzeugen mit Überwachung und Regelung des Antriebs und der Bremse bei Zugbeeinflussung über Linienleiter. In: Elektrische Bahnen. Band 36, Nr. 7, 1965, S. 164–171.
- Walter Schmitz: Die Signaltechnik auf Schnellstfahrstrecken. In: Die Bundesbahn. 1965, S. 53–58.
- Bernd Kuhlmann: Der Berliner Außenring. Kenning, Nordhorn 1997, ISBN 3-927587-65-6, S. 105.
- Eduard Murr: Funktionale Weiterentwicklung der Linienzugbeeinflussung (LZB). In: Die Deutsche Bahn. Band 68, Nr. 7, 1992, S. 743–746.
- Karl Endmann: Signaltechnische Ergänzung der Schrankenanlagen auf der Schnellfahrstrecke München – Augsburg. In: Signal + Draht. Band 57, Nr. 11, 1965, S. 197–202.
- Neue LZB-Technik für Schnellfahrstrecken. In: DB Praxis. ZDB-ID 580765-7, November 1989, S. 2–9.
- LZB-Fahrzeuggerät 80 genehmigt. In: Signal + Draht. 74, Nr. 9, S. 190.
- H. Sporleder: „Sicher fahren mit LZB-Fahrzeuggeräten“. (PDF) 19. September 2015, archiviert vom 22. November 2023; abgerufen am 20. August 2024. (nicht mehr online verfügbar) am
- Gerd Renninger, Franz Riedisser: Eisenbahn Ingenieur Kalender. Hrsg.: Verband Deutscher Eisenbahn-Ingenieure. 2009, ISBN 978-3-7771-0375-4, S. 173–184.
- Forschungs- und Versuchsamt des Internationalen Eisenbahnverbandes (Hrsg.): Frage S 1005: Linienförmige zugbeeinflussung: Bericht Nr. 2 - Teil II: Schlussbericht. Betriebszuverlässigkeit des im ORE-Bericht A 46/R 6, Anlage 6A beschriebenen linienförmigen Zugbeeinflussungssystems. Utrecht, September 1980, Anhang 2: S. 2–7.
- Hansjörg Appel: Die rechnergesteuerte Linienzugbeeinflussung der Bauform Lorenz in der Erprobung der Strecke Bremen–Hamburg. In: Signal + Draht. Band 66, Nr. 11, 1974, S. 202–208.
- Ludwig Wehner: Steuerung des Schienenschnellverkehrs. In: DB-Report 79. Hestra-Verlag, Darmstadt 1979, S. 87–92, ISSN 0072-1549.
- Ohne Autor: Die weiteren Pläne der Neuen Bahn. In: Bahn-Special, Die Neue Bahn. Nr. 1, 1991, Gera-Nova-Verlag, München, S. 78 f.
- Forschungs- und Versuchsamt des Internationalen Eisenbahnverbandes (Hrsg.): Frage S 1005: Linienförmige zugbeeinflussung: Bericht Nr. 2 - Teil I: Schlussbericht. Betriebszuverlässigkeit des im ORE-Bericht A 46/R 6, Anlage 6A beschriebenen linienförmigen Zugbeeinflussungssystems. Utrecht, September 1980, S. 33ff.
- Eduard Murr: Linienzugbeeinflussung – derzeitiger Stand der Entwicklung. In: Signal + Draht. Band 71, Nr. 11, November 1979, S. 225–232.
- Hartwig Schöing, Günter Geiss: Die Instandhaltung der ortsfesten Anlagen der Linienzugbeeinflussung auf der Strecke Hamburg–Bremen. In: Signal + Draht. Band 107 / 108, Nr. 9, 10, 11, 12 / 1, 2, 1978, S. 212–215, 240–242, 267–269, 288–291 / 31–33, 58–60 (Die Hefte 1 und 2 erschienen 1979.).
- Siegfried Gersting: 200 km/h mit Linienzugbeeinflussung. In: Der Eisenbahningenieur. Band 29, Nr. 9, 1978, S. 435 f.
- Werner Hain: Linienzugbeeinflussung (LZB), kein Buch mit sieben Siegeln. In: Eisenbahn-Unfallkasse (Hrsg.): Bahnpraxis B. 2007, S. 4 ff. (PDF-Datei).
- Bernhard Buszinsky: Steuerung des Zugverkehrs auf Schnellfahrstrecken. In: Die Bundesbahn. Band 67, Nr. 6, 1991, S. 689–694.
- Die neue Linienzugbeeinflussung. In: DB Praxis. ZDB-ID 580765-7, Juli 1989, S. 1–8.
- Karl-Heinz Suwe: CIR-ELKE – ein Projekt der Deutschen Bahnen aus Sicht der Eisenbahnsignaltechnik. In: Schweizer Eisenbahn-Revue. Nr. 1, 2, 1993, S. 40–46.
- Geänderte EBO in Kraft gesetzt. In: Der Eisenbahningenieur. Nr. 7, Juli 1991, S. 384.
- Thomas Anton, Gerd Renninger, Joachim Günther: Die neue LZB-Fahrzeugeinrichtung LZB80E – Feldtests, Zulassung, Erprobung. In: Signal + Draht. Band 99, Nr. 6, 2007, S. 20–24.
- Jahresrückblick 1988. In: Die Bundesbahn. Jg. 65, Nr. 1, 1989, S. 44.
- Meldung Einführung des neuen LZB-Betriebsverfahrens nun bundesweit. In: Eisenbahn-Kurier, Nr. 196, 1, 1989, S. 10.
- Meldung Tunnelfunk bis 1991. In: Die Bundesbahn. Jg. 65, Nr. 4, 1989, S. 348.
- Horst Walther, Karl Lennartz: Einsatz von elektronischen Stellwerken auf Neubaustrecken. In: Eisenbahntechnische Rundschau. 36, Nr. 4, 1987, S. 219–222.
- Joachim Fiedler: Bahnwesen. Planung, Bau und Betrieb von Eisenbahnen, S-, U-, Stadt- und Straßenbahnen. Unterschleißheim: Wolters Kluwer, 5. Auflage. 2005, S. 275.
- Lothar Fendrich, Albert Bidinger: Die Komponenten des Fahrwegs für das ICE-System in der Bewährung. In: Eisenbahntechnische Rundschau. Band 41, Nr. 6, Juni 1992, ISSN 0013-2845, S. 391–396.
- Der ICE – ein Produkt des Systemverbundes Bahn. (PDF) In: bahntech, Nr. 1/06. Deutsche Bahn, S. 24 f., archiviert vom (nicht mehr online verfügbar) am 24. Oktober 2006; abgerufen am 24. Januar 2006.
- Florian Kollmannsberger, Lennart Kilian, Klaus Mindel: Migration von LZB zu ETCS – Streckenseitige Parallelausrüstung LZB/ETCS. In: Signal + Draht. Band 95, Nr. 3, 2003, S. 6–11.
- Tätigkeitsbericht 2009 Eisenbahnen. (PDF) In: bundesnetzagentur.de. Bundesnetzagentur, Juni 2010, S. 50, abgerufen am 18. Februar 2022.
- Beschluss des 13. Senats vom 6. Juni 2012, Aktenzeichen 13 B 291/12. Oberverwaltungsgericht für das Land Nordrhein-Westfalen, abgerufen am 11. August 2015.
- Plan zur Erhöhung der Schienenwegkapazität (PEK) für den als überlastet erklärten Schienenweg Wustermark – Rathenow (Strecke 6185). (PDF) In: fahrweg.dbnetze.com. DB Netz, 16. Dezember 2021, S. 23 f., archiviert vom am 13. Januar 2022; abgerufen am 11. Januar 2022.
- Abgeschlossene Hochrüstung aller LZB-Strecken auf CE. In: DB InfraGO. 10. Oktober 2024, abgerufen am 13. Oktober 2024.
- Meldung Tempo 200 bald auch in Österreich. In: Eisenbahntechnische Rundschau. 42, Nr. 5, 1993, S. 276.
- BMVIT (Hrsg.): National Implementation Plan for ERTMS in Austria. Juli 2017, S. 31 (englisch, europa.eu [PDF; 659 kB]).
- Swen Lehr, Thomas Naumann, Otto Schittenhelm: Parallele Ausrüstung der Strecke Berlin–Halle/Leipzig mit ETCS und LZB. In: Signal + Draht. Band 98, Nr. 4, 2006, S. 6–10.
- Ulrich Oser: Betriebliche Gesamtkonzeption für CIR-ELKE. In: Die Deutsche Bahn. Band 68, Nr. 7, 1992, S. 723–729.
- Eric Preuß: Eisenbahnunfälle bei der Deutschen Bahn. transpress-Verlag, Stuttgart 2004, ISBN 3-613-71229-6, S. 106–109.
- ICE mit 185 km/h über Weiche. In: Eisenbahn-Revue International, Heft 1/2002, S. 3.
- Zugsgefährdung in Fallersleben. In: Eisenbahn-Revue International, Ausgabe 6/2002, S. 298.
- Hans-Werner Renz, Marcus Mutz: Kopplung Stellwerk / Zugsicherung mit neuer hochverfügbarer Schnittstelle. In: Signal + Draht. Band 97, Nr. 12, 2005, S. 35–39.
- LZB-Bereichskennzeichen und LZB-Blockkennzeichen im Signalbuch der Deutschen Bahn. (PDF; 1,7 MB) DB Netze, 26. Juli 2017, abgerufen am 3. Oktober 2021.
- Uwe Dräger, Martin Krieger: Das modulare Fahrzeuggerät LZB 80E, offen für den Übergang nach ETCS. In: Signal + Draht. Band 98, Nr. 12, 2006, S. 26–30.
- Joachim Nordmann: Auf einem ETCS-Kern basierende LZB80 mit PZB90-Funktion. In: Signal + Draht. Band 96, September 2004, S. 41–46.
- Fahrdienstvorschrift, Richtlinien 408.21 - 27. (PDF; 2,5 MB) DB Netz AG, abgerufen am 22. November 2020. 408.2456 Abschnitt 5
- Burkhard Wachter: Weiterentwickelte Linienzugbeeinflussung. In: Roland Heinisch (Hrsg.): ICE-Neubaustrecke Köln-Rhein-Main: Planen, Bauen, Betreiben. Hestra-Verlag, Darmstadt 2002, S. 132 f, ISBN 3-7771-0303-9.
- Ralf Klammert: Oberleitung und Bahnstromversorgung In: Roland Heinisch, Armin Keppel, Dieter Klumpp, Jürgen Siegmann (Hrsg.): Ausbaustrecke Hamburg–Berlin für 230 km/h. Eurailpress, Hamburg 2005, ISBN 3-7771-0332-2.
- Ausschluss gleichzeitiger Nutzung von Tunneln durch Reise- und Güterzüge. In: DB Systemtechnik (Hrsg.): Tätigkeitsbericht 2007, S. 21.
- Hans-Peter Vetsch, André Schweizer, Adrian Egloff, Markus Schindelholz: Automatisierter Fahrbetrieb auf konventionellen Eisenbahnstrecken. In: Signal + Draht. Band 113, Nr. 3, 2021, ISSN 0037-4997, S. 22–27.
- Hans-Heinrich Grauf: Das Notbremskonzept für Neubaustrecken. In: Die Bundesbahn. Band 64, Nr. 8, August 1988, S. 709–712.
- Wilhelm Köth: Die Linienzugbeeinflussung. Teil I: Grundlagen. In: Elsners Taschenbuch der Eisenbahntechnik. 1974, ZDB-ID 242938-X, S. 171–215.
- Florian Rohr: Digitale Sensoren zur ETCS-Standorterkennung. In: Der Eisenbahningenieur. Band 69, Nr. 8, August 2019, S. 42 f.
- E. Murr: Der Ortungsrechner für die LZB 80-Fahrgeräte. In: Signal + Draht. Band 83, Nr. 7/8, 1991, ISSN 0037-4997, S. 190–193.
- Gregor Theeg, Sergej Vlasenko (Hrsg.): Railway Signalling & Interlocking: International Compendium. 1. Auflage. Eurailpress, Hamburg 2009, ISBN 978-3-7771-0394-5, S. 240.
- Mathias Oestreich: Loknummern-Salat. In: Eisenbahn-Kurier. Nr. 8, 2021, ISSN 0170-5288, S. 40–42.
- Office for Research and Experiments (Hrsg.): Linienzugbeeinflussung, Schnittstellenbedingungen des im ORE A46/RO 6, Anlage 6A beschriebenen Systems. April 1981.
- LZB – Sicherheit mittels Linienleiter. In: DB Praxis. ZDB-ID 580765-7, April 1988, S. 2–8.
- Eckehard Schnieder: Verkehrsleittechnik: Automatisierung des Straßen- und Schienenverkehrs. Springer, 2007, ISBN 978-3-540-48541-4, eingeschränkte Vorschau in der Google-Buchsuche.
- fahrweg.dbnetze.com
- Julian Fassing, Marcel Helwig, Peter Müller, Toni Keil, Martin Rosenbohm, Fabian Walf, Philip Welsch: Generalsanierung der Riedbahn: eine Zwischenbilanz. In: Der Eisenbahningenieur. Band 75, Nr. 7, Juli 2023, ISSN 0013-2810, S. 46–51 (online [PDF]).
- Joachim Nied, Wolfgang Löns, Jörg Ritzert: Ausbau der Strecke Ingolstadt–Petershausen – Projektziele und aktueller Sachstand. In: Eisenbahntechnische Rundschau, Heft 11, Jahrgang 2009, S. 556–560.
- LZB-Erweiterung Petershausen-Rohrbach - Bauüberwachung LST, 50Hz & KTB. In: DB InfraGO AG. 24. Januar 2025, abgerufen am 27. Januar 2025.
- LZB-Erweiterung Petershausen-Rohrbach – Bauüberwachung. (PDF) In: bieterportal.noncd.db.de. Abgerufen am 27. Januar 2025 (Datei Anlage 1.0 Projektbeschreibung u Vorbem_BÜW_LB.pdf in verschachteltem ZIP-Archiv).
- fahrweg.dbnetze.com
- Linienzugbeeinflussung (LZB) westlich Pasing (NEM 18). In: bahnausbau-muenchen.de. DB Netz, Januar 2018, abgerufen am 26. Januar 2018 (Seite wurde Ende Januar 2018 veröffentlicht).
- Ludwig Wehner: Signalsystem der S-Bahn München. In: Signal + Draht. 62, Nr. 11, S. 200–204, 1970.
- Heinz Delvendahl: Gestaltung der Bahnanlagen und signaltechnische Ausstattung moderner S-Bahnen. In: Die Bundesbahn. 1969, S. 993–1001.
- Willi Lettau: Halbzeit für den Bau der Münchener S-Bahn. In: Die Bundesbahn. Nr. 21/22, 1969, S. 1073–1088.
- Otto Wolf: Das Signalsystem für die S-Bahn München. In: Signal + Draht. Band 60, Nr. 9, 1968, S. 141–150.
- Klaus Hornemann: Linienzugbeeinflussung bei der S-Bahn München. In: Eisenbahn-Revue International. Heft 6/2006, S. 306–311.
- Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie: Antwort vom 20. April 2010 auf eine Landtagsanfrage vom 1. Februar 2010. In: Drucksache 16/4700 vom 8. Juni 2010, Bayerischer Landtag, München 2010, S. 3.
- Schreck, Meyer, Strumpf: S-Bahnen in Deutschland. Alba Buchverlag, Düsseldorf 1979 (2. Auflage), S. 72ff.
- S-Bahn München: 420-Comeback? In: Bahn-Report. Nr. 3, 2019, S. 69.
- Erstmals „LZB“-Einbau bei den ÖBB. In: Bahn Revue, Jahrgang 1991, ZDB-ID 1390658-6, S. 43 f.
- Nationaler Umsetzungsplan ERTMS. Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie, Juli 2017, abgerufen am 8. September 2022.
- Heinz Althaus: Linienförmiges Zugbeeinflussungssystem ZSL 90. In: Signal + Draht, 86, Nr. 5, S. 162, 1994
- Neues in Kürze. In: SEAK (Hrsg.): Eisenbahn-Amateur. 1981, SBB / Anlagen, S. 768.
- Hugo Hayoz: Das System der Linienzugbeeinflussung LZB L 72 bei den Schweizerischen Bundesbahnen (SBB). In: Eisenbahntechnische Rundschau, 27, Nr. 10, 1978, S. 623–630.
- Titelblatt und Kommentar zum Inhaltsverzeichnis. In: Signal + Draht. Bd./Jg., Nr. 73, 1981, S. 133 f.
- Siemens AG: Elektrischer Triebzug DESIRO ET für den Express Rail Link Kuala Lumpur Malaysia. (PDF) Ehemals im ; abgerufen am 14. Dezember 2011. (Seite nicht mehr abrufbar. Suche in Webarchiven) (nicht mehr online verfügbar)
- ETCS für Madrid – Sevilla. In: Eisenbahn-Revue International. Nr. 5, Mai 2020, ISSN 1421-2811, S. 259.
- A. Lau: Verkehrsamateure proben die Zukunft. In: Hamburger Nahverkehrsnachrichten Nr. 15/1 von März 1968, S. 3–5, Hamburger Verkehrsamateure
- Markus Jurziczek: Linienzugbeeinflussung (LZB). Berliner Verkehrsseiten 2010. Abgerufen am 11. August 2015.
- Alexander Seefeldt: Berliner U-Bahn-Linien / U9 / Nord-Süd durch die City-West. Robert-Schwandl-Verlag, Berlin 2011, ISBN 978-3-936573-30-5, S. 56–67.
- Markus Jurziczek: Der SelTrac-Versuchsbetrieb. Berliner Verkehrsseiten 2010. Abgerufen am 11. August 2015.
- Markus Jurziczek: Systemtechnik für den automatischen Regelbetrieb (STAR). Berliner Verkehrsseiten 2010. Abgerufen am 11. August 2015.
- Dr. Lichtenegger (TU Graz): Abstandsregelung
- Cornelie Heidecker, Klaus Dorendorf, Pierre Wossough, Dieter Groner: Neue Generation von LZB-Fahrzeuggeräten für die U-Bahn München. In: Signal + Draht. Band 97, Nr. 12, 2005, S. 30–34.
- Knut Strübing: Technische Lösungen für die Überführung des konventionellen in den automatischen Betrieb. (PDF; 2,5 MB) Abgerufen am 11. August 2015.
- Projektseite Fahrerlose U-Bahn Nürnberg. Archiviert vom 9. Juli 2012; abgerufen am 10. Februar 2011. (nicht mehr online verfügbar) am Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.
- Reiner Behnsch: ETCS-Strategie der DB Netz AG: Konzept zur wertschöpfenden ETCS-Strategie. (PDF; 920 kB) DB Netze, 18. September 2013, archiviert vom 23. Oktober 2015; abgerufen am 11. August 2015. (nicht mehr online verfügbar) am
- Christian Beckmann, Stefan Röver: ETCS für die Digitale Schiene Deutschland. In: DB Netz AG (Hrsg.): Infrastrukturprojekte 2018. Bauen bei der Deutschen Bahn. PMC Media House, Hamburg 2018, ISBN 978-3-96245-163-9, S. 114–119.
- Niels Hohn: Aktueller Stand der Implementierung von „ETCS signalgeführt“ (ETCS Level 1 Limited Supervision). In: Signal + Draht. Band 113, Nr. 9, September 2017, ISSN 0037-4997, S. 45–48.
- Philipp Nagl: ESTW Gelnhausen in Betrieb - Letzte LZB L72 Zentrale außer Betrieb. Drehscheibe Online, 21. November 2023, abgerufen am 22. November 2023.
- Josef Ramerth: ETCS – Migrationsplan und Inbetriebnahme weiterer Strecken. (PDF; 2,3 MB) DB Netze, 13. Mai 2014, archiviert vom 23. Oktober 2015; abgerufen am 11. August 2015. (nicht mehr online verfügbar) am
- Uwe Wendland: Ablösekonzept LZB → ETCS. (PDF; 1,6 MB) ETCS-Kundenveranstaltung am 13. Mai 2014 in Kassel. DB Netze, 13. Mai 2014, archiviert vom 23. Oktober 2015; abgerufen am 11. August 2015. (nicht mehr online verfügbar) am
- Uwe Dräger: ETCS und der Übergang zu den nationalen Zugsicherungssystemen der DB AG. In: Signal + Draht. Band 96, Nr. 11, 2004, S. 6–15.
Autor: www.NiNa.Az
Veröffentlichungsdatum:
wikipedia, wiki, deutsches, deutschland, buch, bücher, bibliothek artikel lesen, herunterladen kostenlos kostenloser herunterladen, MP3, Video, MP4, 3GP, JPG, JPEG, GIF, PNG, Bild, Musik, Lied, Film, Buch, Spiel, Spiele, Mobiltelefon, Mobil, Telefon, android, ios, apple, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, computer, komputer, Informationen zu Linienförmige Zugbeeinflussung, Was ist Linienförmige Zugbeeinflussung? Was bedeutet Linienförmige Zugbeeinflussung?
Dieser Artikel behandelt das in Deutschland entwickelte System Zur allgemeinen Funktionsweise und moglichen technischen Umsetzungen siehe Zugbeeinflussung Die Linienformige Zugbeeinflussung LZB auch Linienzugbeeinflussung ist ein System der Eisenbahn das verschiedene Funktionen im Bereich der Sicherung von Zugfahrten und der Zugbeeinflussung ubernimmt Neben der Ubermittlung von Fahrauftragen Hochstgeschwindigkeit und verbleibendem Bremsweg auf eine Anzeige im Fuhrerstand uberwacht das System das Fahrverhalten der Zuge und kann durch Eingriffe in die Fahrzeugsteuerung die Fahrt der Zuge beeinflussen Ausgerustete Strecken in Deutschland Stand Dezember 2024 Linienformige Zugbeeinflussung ETCS Linienformig bedeutet dabei dass der Informationsaustausch zwischen Strecken und Fahrzeugeinrichtung wahrend der gesamten Fahrt und auch wahrend Betriebs und Verkehrshalten dauernd und zusatzlich in beiden Richtungen besteht Einige Bauformen der LZB ermoglichen die vollautomatische Steuerung der Fahr und Bremsvorgange von Zugen Die linienformige Zugbeeinflussung verwendet eine induktive Datenubertragung zwischen Fahrzeug und Fahrweg mittels eines im Gleis verlegten Antennenkabels des sogenannten Linienleiters LZB wird in Deutschland Osterreich und Spanien sowie bei einigen U Bahnen in anderen Landern eingesetzt Im Jahr 2014 betrieb DB Netz heute DB InfraGO 2465 Kilometer zweigleisige Strecken mit LZB die bis 2030 auf das Nachfolgersystem ETCS umgestellt werden sollten Ende 2021 waren insgesamt 2609 km von 33 288 km im Netz der Deutschen Bahn mit LZB ausgerustet Hintergrund der EntwicklungIm klassischen Eisenbahnbetrieb werden die Zugfahrten durch ortsfeste Signale gefuhrt Ein Hauptsignal zeigt dabei an ob und ggf mit welcher Geschwindigkeit der Gleisabschnitt bis zum nachsten Hauptsignal befahren werden darf vgl Sicherung von Zugfahrten Die Stellung eines Hauptsignals wird wegen der langen Bremswege von Zugen durch Vorsignale oder das vorherige Hauptsignal angekundigt Fahrt ein Zug an einem Vor oder Hauptsignal in der Stellung Halt erwarten vorbei muss der Triebfahrzeugfuhrer den Zug so weit abbremsen dass er vor dem folgenden Hauptsignal anhalten kann Bei steigenden Geschwindigkeiten der Zuge ergeben sich daraus zwei Probleme Zum einen sinkt die Zeit in der ein Triebfahrzeugfuhrer den Signalbegriff eines ortsfesten Signals wahrnehmen kann wenn er darauf zufahrt Insbesondere bei schlechten Sichtverhaltnissen wie Nebel kann die Zeit fur eine sichere Wahrnehmung zu kurz werden Zum anderen steigt der notwendige Vorsignalabstand durch die langeren Bremswege mit dem Quadrat der Geschwindigkeit Da aber auch fur langsame Zuge bereits beim Passieren des Vorsignals Fahrt erwarten gezeigt werden soll andernfalls musste der Zug bremsen erhoht sich fur die langsamen Zuge die Vorbelegungszeit der Abschnitte was die Leistungsfahigkeit der Strecke reduziert In Deutschland sollte der Regelvorsignalabstand von 1000 Metern nicht verandert werden Um eine Bremsung bis zum Stillstand innerhalb von 1000 m zu gewahrleisten ist selbst bei guter Bremsausrustung des Zuges Magnetschienenbremse die zulassige Hochstgeschwindigkeit auf 160 km h begrenzt Fahrten mit mehr als 160 km h werden deshalb in Deutschland durch eine kontinuierliche Zugbeeinflussung gefuhrt wobei der Begriff Fuhrung eine kontinuierliche Fuhrerraumsignalisierung beinhaltet 15 Abs 3 EBO 40 Abs 2 EBO EinsatzgebieteDie LZB wurde fur den Hochgeschwindigkeitsverkehr entwickelt wird aber aufgrund der dichteren moglichen Zugfolge gegenuber alteren Systemen auch auf Strecken von S U Bahnen und bei Guter oder Mischverkehr im Rahmen des CIR ELKE Projektes eingesetzt Die Hauptvorteile der LZB gegenuber den alteren nur punktformig ubertragenden Systemen ist die Moglichkeit extrem kurze Blockabschnitte zu verwenden und den Bremsweg der Zuge abhangig von deren Geschwindigkeit und Bremsverhalten zu uberwachen Grundlegende FunktionsweiseBei der LZB ubernimmt eine Streckenzentrale Zentralrechner die Uberwachung der Zugfahrt Die Streckenzentrale steht uber einen im Gleis verlegten Linienleiter immer mit den Fahrzeugen in Verbindung Uber diese Verbindung melden die Fahrzeuge ihre Position und Geschwindigkeit an die Streckenzentrale Diese berechnet fur jeden Zug individuelle Fuhrungsgrossen und sendet diese an die Fahrzeuge Im Fahrzeug wird die Einhaltung der Fuhrungsgrossen uberwacht genauer siehe Funktionsweise Durch ein LZB Gerat im Fuhrerstand werden dem Triebfahrzeugfuhrer folgende Informationen dargestellt Soll Geschwindigkeit momentan gultige Hochstgeschwindigkeit Zielgeschwindigkeit Hochstgeschwindigkeit am nachsten Geschwindigkeitswechsel Zielentfernung Entfernung bis zum nachsten Geschwindigkeitswechsel Die Sollgeschwindigkeit berucksichtigt dabei bereits eine ggf notwendige Bremsung bei Annaherung an den Zielpunkt sie fallt also bei Annaherung kontinuierlich ab bis sie schliesslich am Zielpunkt mit der Zielgeschwindigkeit identisch ist Ein Halt zeigendes Signal ist dabei ein Zielpunkt mit der Zielgeschwindigkeit null Der nachste Zielpunkt wird je nach genauer Ausfuhrung bis zu einer Entfernung von 38 000 Metern dargestellt Wird bis dorthin keine Restriktion gefunden entspricht die Zielgeschwindigkeit der zulassigen Streckengeschwindigkeit fallweise auch der zulassigen Geschwindigkeit der Fahrzeuge im Zug Dem Triebfahrzeugfuhrer wird also mit diesen Grossen die Befahrbarkeit der folgenden Abschnitte ggf mit Geschwindigkeitsbeschrankung dargestellt In konventionellen Signalsystemen waren diese Angaben in den Begriffen mehrerer Vor und Hauptsignale kodiert Bei der Entwicklung des europaischen Zugsicherungssystems European Train Control System ETCS hat man dieses Grundkonzept wahrscheinlich weitgehend von der LZB ubernommen siehe dazu Full Supervision bzw Darstellung uberwachter Geschwindigkeiten In Verbindung mit der Automatischen Fahr und Bremssteuerung AFB ware auf diese Weise eine fast vollautomatische Steuerung des Zuges moglich Lediglich die Bremsungen fur das Halten an Bahnsteigen mussten vom Triebfahrzeugfuhrer noch manuell durchgefuhrt werden Allerdings orientiert sich die AFB stets an der maximal moglichen Geschwindigkeit und versucht diese zu erreichen bzw zu halten So wurde es z B haufig vorkommen dass die AFB trotz Zufahrt auf ein haltzeigendes Signal noch beschleunigt und dann kurz vor dem Signal stark abbremst Ein solcher Fahrstil ist jedoch weder komfortabel noch energieeffizient Daher wird nur in bestimmten Situationen von der vollautomatischen Steuerung durch LZB und AFB Gebrauch gemacht auch wenn die LZB Bremskurven bereits deutlich flacher verlaufen als die die bei 160 km h von der punktformigen Zugbeeinflussung angesetzt werden Bremskurvenberechnung Die der Berechnung von Bremskurven zu Grunde zu legende Bremsverzogerung wird anhand der vom Triebfahrzeugfuhrer am Fahrzeuggerat angegebenen zulassigen Geschwindigkeit und Bremshundertsteln ausgewahlt ferner wird von der Streckenzentrale eine Gefallestufe ubermittelt Anhand dieser Werte wahlt das Fahrzeuggerat die den Bremskurven zu Grunde zu legende Verzogerung aus Tabellen aus die auf dem Fahrzeug hinterlegt sind Die Bremstafeln beschreiben den zulassigen Bremsweg in Abhangigkeit von Bremshundertsteln Geschwindigkeit sowie Gefalle und wurden nach Antragen der DB von 1987 und 1989 vom Bundesverkehrsministerium genehmigt Die LZB nutzte fur Betriebsbremsungen zunachst Sollbremskurven mit einer typischen Verzogerung von 0 5 m s an der Triebfahrzeugfuhrer ggf mit AFB entlang bremsen sollen Den Sollbremskurven wurden Bremsuberwachungskurven zugeordnet Naherte sich der Triebfahrzeugfuhrer diesen an erfolgte zunachst eine optische und akustische Warnung bei Erreichen wurde eine Zwangsbremsung ausgelost Die Bremsuberwachungskurven basierten auf zwolf verschiedenen Verzogerungen zwischen 0 115 und 1 10 m s die insbesondere vom Bremsvermogen des Zuges Bremshundertstel und dem Gefalle der Strecke abhangig waren Entsprechende Bremstafeln wurden aufgestellt Fur Bremsausgangsgeschwindigkeiten bis 150 km h wurden in den einzelnen Verzogerungsstufen dabei konstante Verzogerungen uber den gesamten Geschwindigkeitsbereich unterstellt fur daruber liegende Bremsausgangsgeschwindigkeiten fielen die unterstellten Verzogerungswerte linear ab um fallenden Haftwerten zwischen Rad und Schiene Rechnung zu tragen Bremstafeln wurden zunachst fur die Ebene fur 5 Promille Gefalle Maximalwert erster Ausbaustrecken sowie 12 5 Promille Gefalle Maximalwert fur Neubaustrecken erstellt Die 1986 aufgestellten Bremstafeln fur Personenzuge Bremsart R P umfassten den Geschwindigkeitsbereich von 80 bis 300 km h Fur Guterzuge wurden spater gesonderte LZB Bremstafeln erstellt Dabei wurden Geschwindigkeiten bis 120 km h zu Grunde gelegt Wahrend konventionell nur 90 km h Bremsstellung G bzw 100 km h Bremsstellung P zulassig waren standen noch hoheren Geschwindigkeiten mit LZB thermische Belastungsgrenzen der Bremsen entgegen Fur die Schnellfahrstrecke Koln Rhein Main mit Neigungen bis 40 Promille hatte das bisherige LZB Bremsmodell zu Betriebsbremswegen aus 300 km h von bis zu ca 15 km gefuhrt Aufgrund des vergleichsweise grossen Verhaltnisses von Soll und Uberwachungsverzogerung von 7 10 fuhrte dies zu einem unnotig grossen Abstand Mit der Einfuhrung von CIR ELKE II wurde das Bremsmodell weiterentwickelt Dabei wurden zehn Bremstafeln in 10 km h sowie 10 Bremshundertstel Intervallen fur Gefalle bis 44 sowie Steigungen von bis zu 39 aufgestellt Durch die Berucksichtigung mehrerer Bremstafeln in einem Bremsweg mit wechselnden Langsneigungen konnte die Streckenkapazitat erheblich gesteigert werden Entwicklung der linienformigen ZugbeeinflussungIn den 1920er Jahren liefen in Deutschland verschiedene Versuche mit punktformigen Zugbeeinflussungssystemen An bestimmten Punkten sollten dabei mittels mechanischer magnetischer elektrischer und induktiver Beeinflussung Zuge automatisch verlangsamt oder angehalten werden konnen Um damit verbundene betriebliche Einschrankungen zu uberwinden wurde eine linienformige Zugbeeinflussung vorgeschlagen die nicht nur an einzelnen Punkten sondern kontinuierlich Zugfahrten beeinflussen sollte In den Vereinigten Staaten waren linienformige Systeme zu dieser Zeit bereits auf etwa 6000 km im Einsatz Vorgeschlagen wurde den Uberwachungsstrom der Gleisstromkreise zu nutzen um kontinuierlich zu ubertragen ob die beiden vorausliegenden Blockabschnitte frei oder besetzt sind Dabei sollten bis zu 20 cm uber den stromdurchflossenen Schienen vor der ersten Achse liegende Empfangerspulen die Daten aufnehmen Uber Stromkreise sollten sowohl die Bremsen bedient als auch der Signalbegriff des zuruckliegenden und der beiden vorausliegenden Blocksignale dem Triebfahrzeugfuhrer mittels einer grunen gelben bzw roten Lampe angezeigt werden Die ersten Versuche mit einer linienformigen Zugbeeinflussung fanden 1928 bei der U Bahn Berlin statt Linienleiter auf Fester Fahrbahn Die Entwicklung der modernen LZB in Deutschland begann in den 1950er Jahren Hermann Lagershausen Grunder des Instituts fur Verkehr Eisenbahnwesen und Verkehrssicherung heute Institut fur Eisenbahnwesen und Verkehrssicherung an der Technischen Universitat Braunschweig ehemals TH unternahm einen wesentlichen Schritt der Entwicklung Das Fahren auf elektrische Sicht war fur Lagershausen eine wesentliche Weiterentwicklung fur das System Bahn die es damals in Deutschland zu erforschen galt In Zusammenarbeit mit Leo Pungs Leiter des Instituts fur Schwachstromtechnik an der TU Braunschweig und erforschte er ein System das einen Linienleiter zum Einschalten von Bahnubergangen BU nutzte Das Projekt wurde zwar nicht umgesetzt jedoch war damit das Potential des Linienleiters zur Informationsubertragung gezeigt Basierend auf den Ergebnissen des BU Projekts und eigenen neuen Uberlegungen konnte Lagershausen die Deutsche Forschungsgemeinschaft DFG uberzeugen ein Projekt Das Problem des Fahrens von Eisenbahnzugen auf elektrische Sicht von 1958 bis 1964 zu fordern Schwerpunkt des Projekts war die Erarbeitung der Grundlagen fur die Verwendung des Linienleiters als Ubertragungsmedium um die ortsfesten Signale beim Fahren auf elektrische Sicht zu ersetzen Mit diesen theoretischen Grundlagen beschaftigte sich vor allem Peter Form spaterer Professor am Institut fur Verkehr Eisenbahnwesen und Verkehrssicherung der TH Braunschweig 1956 begann er seine Arbeiten am Institut als Student Zusammen mit Heinz Rummert erstellte er seine Studienarbeit Geschwindigkeitsabhangige Einschaltung von Bahnubergangen durch gekreuzte Linienleiter in immer kurzer werdenden Abstanden Basierend auf den in dieser Zeit gewonnenen Erkenntnissen und den von Rummert erarbeiteten Grundlagen beschaftigte er sich intensiv mit den betrieblichen und fahrdynamischen Randbedingungen eines Fahrens auf elektrische Sicht und stellte das Ergebnis seiner Uberlegungen in seiner Dissertation dar Die Arbeiten von Form wurden durch Mitarbeiter der Siemens AG begleitet die sich ebenfalls Gedanken uber die Verwendung von Linienleitern machten Gemeinsam wurden verschiedene Entwicklungen patentiert So wurden die Bahnunternehmen auf die Arbeiten aufmerksam Die Deutsche Bundesbahn unterstutzte das Institut durch die Bereitstellung eines Gleisabschnitts der grossformatige Experimente zuliess Die Hamburger Hochbahn AG HHA ermoglichte auf ihrem U Bahn Netz Versuchsaufbauten zu installieren und damit wesentliche Informationen zu gewinnen Die ersten Versuche der DB mit einer linienformigen Zugbeeinflussung gehen in das Jahr 1959 zuruck Nach Ubertragungsversuchen auf den Streckenabschnitten Lehrte Wolfsburg ab 1960 Hanau Flieden und Laufach Heigenbrucken fiel die Entscheidung fur ein Zeit Multiplex Verfahren Ein entsprechender Prototyp entwickelt von Siemens amp Halske und der Deutschen Bundesbahn wurde im Sommer 1963 auf einem rund 20 Kilometer langen Abschnitt zwischen Forchheim und Bamberg in Versuchen bei Geschwindigkeiten von bis zu 200 km h erprobt Die Linienzugbeeinflussung sollte anschliessend auf der Bahnstrecke Hannover Celle und deren Fortsetzung verwendet werden Die Versuche auf dieser Strecke dauerten bis 1964 Nachdem die ersten Betriebsversuche mit lokaler Signaltechnik durchgefuhrt wurden jede LZB Schleife umfasste nur den Bereich zwischen zwei Signalen wurde die Versuchsstrecke ab Fruhjahr 1964 auf ein zentrales Steuerungssystem umgebaut und ab Sommer 1964 erprobt Fur diese Zusammenfassung sprach unter anderem die geringere Zahl notwendiger Steuerstellen sowie deren Unterbringung in geschutzten Gebauden die einfachere und ubersichtlichere Eingabe von Langsamfahrstellen sowie konstante und ruhige Anzeigen auf der Lok Auf dieser Grundlage fiel die Entscheidung zur Ausrustung der Strecke Munchen Augsburg mit etwa 2 km langen Leiterschleifen und ortselektiver Ortung Ein wesentliches Ziel der Entwicklung in der Bundesrepublik Deutschland war die Geschwindigkeit planmassiger Reisezuge auf 200 km h anheben zu konnen Dabei stellte sich zunachst das Problem dass beim ublichen Abstand zwischen Vor und Hauptsignal von 1000 m und den damals ublichen Bremssystemen ohne Magnetschienenbremse ein sicheres Anhalten nur bis 140 km h sichergestellt war Bei einer mittleren Bremsverzogerung von 0 7 m s lag der angenommene Bremsweg aus 200 km h einschliesslich einer Verzogerungszeit und einer Verzogerung bis zum vollen Bremseinsatz bei etwa 2500 Meter Damit hatten Lokfuhrer aus 1 5 km auch bei ungunstigen Sichtverhaltnissen den Signalbegriff des Vorsignals erkennen mussen um am Halt zeigenden Hauptsignal sicher anhalten zu konnen Die damalige Deutsche Bundesbahn stand damit vor der Wahl entweder zusatzliche Signale an der Strecke aufzustellen um mehrere Abschnitte voraus zu signalisieren oder mittels einer Fuhrerstandssignalisierung die Stellung mehrerer vorausliegender Signale im Fuhrerstand zusammengefasst anzuzeigen Gegen die Anordnung eines zusatzlichen Vor Vorsignals sprach ferner eine mogliche Verwirrung durch die grosse Zahl der auf dicht befahrenen Strecken zu beobachtenden Signale Modulare Fuhrerraumanzeige MFA eines ICE 2 im LZB Betrieb Ist Soll und Zielgeschwindigkeit liegen bei 250 km h die Zielentfernung bei 9800 Metern Die Bundesbahn entschied sich nach einer eingehenden Prufung der Mehrabschnittssignalvariante aus einer Reihe von Grunden fur eine Fuhrerstandssignalisierung Da das LZB System auf die vorhandene Signalisierung aufsetzt war eine Schulung von Betriebspersonal das nicht mit Schnellfahrten befasst war nicht notwendig Auch konnten die vorhandenen Streckensignale beibehalten und mussten nicht verandert bzw erganzt werden Signale an der Strecke mussen in der Regel nicht mehr beachtet werden Daher kann ein Schnellfahrbetrieb auch bei ungunstigen Witterungsbedingungen erfolgen Daruber hinaus entfallen Gefahren die durch das Nicht Erkennen unbewusste Vorbeifahren oder fehlerhafte Ablesen eines Signalbegriffs entstehen konnen Durch die weite Vorausschau uber mehrere Hauptsignale hinweg besteht soweit es die Fahrplanlage zulasst die Moglichkeit einer angepassten und damit energiesparenden und sanfteren Fahrweise Mit der standigen Informationsubertragung zu den Zugen kann eine unmittelbare Reaktion auf Veranderungen von Signalbegriffen erfolgen beispielsweise bei der Rucknahme eines fahrtzeigenden Signals bei plotzlicher Betriebsgefahr In der Regel konnen schnellfahrende Zuge auf konventionellen Strecken ebenso verkehren wie konventionelle Zuge auf Schnellfahrstrecken Bei einem Ausfall der Fuhrerstandssignalisierung besteht die Moglichkeit unter dem konventionellen Signalsystem mit niedrigeren Geschwindigkeiten zu fahren Wahrend an Hauptsignalen in den 1960er Jahren ohne die heutigen Lichtsignal Geschwindigkeitsanzeiger in der Regel nur die Geschwindigkeitsstufen Halt 40 oder 60 km h sowie freie Fahrt signalisiert werden konnten ermoglicht die LZB Fahranweisungen in beliebigen 10 km h Schritten Die LZB ermoglicht die Unterteilung der Strecke in eine grossere Zahl kleinraumigerer Blockabschnitte Damit kann die Leistungsfahigkeit einer Strecke gesteigert werden Bei hinreichend kleiner Blockabschnittslange ist praktisch ein Fahren im absoluten Bremswegabstand moglich In Verbindung mit der Automatischen Fahr und Bremssteuerung AFB ist eine halbautomatische Steuerung von Zugen moglich Die LZB galt dabei als ein Schritt hin zu einer moglichen Vollautomatisierung des Fahrens und Bremsens Man dachte hierbei auch schon fruh an mogliche Energieeinsparpotentiale durch den Einsatz der LZB Fur eine effektive Sicherung der Schnellfahrten wurde die Fuhrerstandssignalisierung um ein neues Zugbeeinflussungssystem erganzt das Fahrzeuge nicht nur an den Standorten der Signale an bestimmten Punkten punktformig sondern permanent uberwachte Diese kontinuierliche linienformige Ubertragung verlieh der Linienzugbeeinflussung ihren Namen Erste Uberlegungen zur Konzeption der LZB gingen dabei zunachst an eine Anzeige der Stellung der drei kommenden Hauptsignale einschliesslich Ziel Soll und Istgeschwindigkeiten im Fuhrerstand Anschliessend setzte sich die Ansicht durch dass eine Anzeige von Zielgeschwindigkeit und Zielabstand fur den Triebfahrzeugfuhrer gunstiger ware Verworfen wurden auch Uberlegungen Linienleiterschleifen jeweils 2 7 km vor jedem Hauptsignal beginnen zu lassen Zwischenzeitlich ab Anfang der 1960er Jahre unternahm die Deutsche Reichsbahn zwischen Schkeuditz und Grosskugel Versuche mit einer linienformigen Zugbeeinflussung die mit kodierten Gleisstromkreisen auf einen Versuchstriebwagen ubertrug Das Projekt zeigte die prinzipielle Nutzbarkeit es scheiterte an fehlendem rechtlichen Bedarf einer Zugbeeinflussung und den materiellen Moglichkeiten der DDR In der Bundesrepublik liefen Mitte der 1960er Jahre verschiedene Versuchsstrecken bei den Berliner Verkehrsbetrieben der Hamburg Hochbahn und der Munchner U Bahn 1964 wurde eine automatisch gesteuerte Lok bei den Rheinischen Braunkohlewerken in Betrieb genommen 1966 eine Anlage zur Rangierloksteuerung per Linienleiter in einem Huttenwerk Die von der Deutschen Bundesbahn in Zusammenarbeit mit Siemens entwickelte Fruhform der linienformigen Zugbeeinflussung ermoglichte zunachst eine elektronische Vorausschau uber funf Kilometer Sie kam ab 1965 auf der Bahnstrecke Munchen Augsburg zum Einsatz Ausgerustet wurde der Abschnitt zwischen dem Ausfahrsignal Munchen Pasing km 8 5 und Augsburg Hochzoll km 57 0 dabei wurden funf Steuerstellenbereiche gebildet Einzelne Zuge fuhren auf diesem Abschnitt zur Internationalen Verkehrsausstellung 1965 taglich mit einer Spitzengeschwindigkeit von 200 km h Mit LZB wurde auch von 1967 bis 1969 gefahren Von 1969 bis 1974 stand die LZB nicht zur Verfugung Aufgrund der kurzen Vorbereitungszeit konnten 17 schienengleiche Bahnubergange fur die Versuchsfahrten nicht aufgelost werden und wurden in die LZB einbezogen Die Mitte der 1960er Jahre in Betrieb genommenen Streckeneinrichtungen der LZB 100 waren zunachst in 3 Phasen MT Technik mit elektronischen Bauelementen Germanium Transistoren Ringkerne gebaut worden Je Stellwerk war eine LZB Steuerstelle einzurichten Die entsprechende Fahrzeugausrustung wurde ebenfalls als LZB 100 bezeichnet Nach anderen Angaben wurde die LZB 100 als zweite LZB Generation ab 1974 eingefuhrt Anfang der 1970er Jahre wurde die Streckeninfrastruktur auf redundante Rechnersysteme der Firma umgestellt Die von Siemens entwickelte sogenannte Steuerstellentechnik wurde ab 1974 sukzessive zwischen Munchen und Donauworth sowie zwischen Hannover und Uelzen in Betrieb genommen Die Streckengerate basierten auf Schaltkreisen in 3 Phasen MT Technik Die Streckenabschnitte wurden mit Schieberegistern nachgebildet die standig entgegen der Fahrtrichtung abgefragt wurden Ebenfalls 1974 begann Standard Elektrik Lorenz auf der Strecke Bremen Hamburg an Stelle von fest verdrahteten Schaltungen Prozessrechner als Zwei von Drei Rechner Systeme einzusetzen Bauform Lorenz bzw LZB L 72 Die Betriebserprobung wurde auf der Strecke mit den Streckenzentralen Sagehorn und Rotenburg Han am 17 Juni 1974 auf einer Lange von 43 km begonnen Zunachst fuhren bis zu zwolf fahrplanmassige Zuge unter LZB Fuhrung zum Winterfahrplan 1974 1975 wurde deren Zahl auf bis zu siebzehn erhoht Die Ausrustungskosten der Strecke betrugen 18 Millionen DM wovon 7 Mio DM auf die Sicherung von 29 Bahnubergangen entfielen Nachdem die linienformige Zugbeeinflussung Mitte der 1970er Jahre die Serienreife noch nicht erreicht hatte wurde fur die ersten deutschen Neubaustrecken der Einsatz des Sk Signalsystems mit einer Hochstgeschwindigkeit von 200 km h erwogen Als die Zuverlassigkeit 1975 gesteigert werden konnte wurden diese Plane verworfen Die ab Oktober 1975 erprobte linienformige Zugbeeinflussung wurde schliesslich im Dezember 1978 fur serienreif erklart Der Anteil der LZB Ausfalle gemessen an den zuruckgelegten Streckenkilometern lag bei etwa 1 5 Prozent Die LZB wurde auch in Zusammenarbeit mit den Schweizerischen Bundesbahnen weiterentwickelt So fanden in den Jahren 1977 bis 1979 auf der Strecke Bremen Hamburg sowie zwischen Lavorgo und Bodio auf der Gotthardbahn quantitative Zuverlassigkeitsuntersuchungen des Gesamtsystems statt Die Ausfallraten l der fahrzeugseitigen pro Zug und Kilometer und streckenseitigen Teile pro Zentrale und Stunde bzw pro Kilometer und Stunde fur den eigentlichen Linienleiter lagen dabei im Bereich 10 3 bis 10 4 Sie differierten aufgrund der unterschiedlichen Entwicklungsstande zwischen den deutschen und Schweizer Systemvarianten allerdings bei einzelnen Teilsystemen deutlich Eine Auswertung fur das Jahr 1978 zeigte dass typischerweise rund 1 7 Prozent der LZB Zugkilometer aufgrund von Fahrzeugstorungen nicht unter LZB Fuhrung gefahren werden konnten Eine Auswertung fur die Strecke Hamburg Bremen zeigte daruber hinaus dass rund 0 5 Prozent der LZB km aufgrund streckenseitiger Storungen nicht in LZB Fuhrung gefahren werden konnten Etwa alle 6000 Stunden kam es zu einer LZB Rechner Storung die einzelnen Teile der Anlage sollten nach einer Vollinspektion mit hoher Wahrscheinlichkeit ein halbes bis ein Jahr storungsfrei laufen Bei den einzelnen Abschnitten des Linienleiters wurde mit einem Storungsabstand von drei bis sechs Monaten gerechnet Zum Fahrplanwechsel im Mai 1978 war der LZB Betrieb mit 200 km h auf den Streckenabschnitten Munchen Augsburg Donauworth Hannover Uelzen und Hamburg Bremen auf insgesamt 170 von 260 Kilometern mit LZB ausgerusteten Streckenkilometern aufgenommen worden Ende Marz 1982 genehmigte der Entwicklungsausschuss der damaligen Deutschen Bundesbahn die Beschaffung von acht Prototyp Fahrzeuggeraten LZB 80 Die LZB 80 gilt als dritte Generation der LZB und wurde ab 1984 eingefuhrt Im Jahr 1980 waren bei der Deutschen Bundesbahn rund 150 Lokomotiven der Baureihe 103 drei Triebzuge der Baureihe 403 sowie 140 Triebzuge der Baureihe 420 mit LZB ausgerustet Bis in die 1980er Jahre hinein bildete die LZB nur die bestehende Infrastruktur ortsfeste Signale ab Die dahinter stehende Infrastruktur z B Stellwerke Streckenblock wurde unverandert beibehalten Abgesehen von den mit LZB moglichen Schnellfahrten wurden Fahrzeuge ohne LZB Ausrustung blocktechnisch gleich behandelt Beide befuhren Blockabschnitte gleicher Grosse die jeweils von ortsfesten Licht oder Formsignalen gedeckt wurden Die ortsfesten Signale haben dabei Vorrang vor den Anzeigen der LZB In der damaligen Fahrdienstvorschrift war das Verfahren als Betriebsverfahren LZB mit Signalvorrang definiert Die Fahrzeugsoftware war zunachst noch in Assembler geschrieben und wurde Anfang der 1990er Jahre auf Pascal umgestellt Umsetzung in Deutschland Dunkelgeschaltetes Ks Signal im Bahnhof Allersberg Die zwischen 1987 und 1991 in Betrieb genommenen Neubaustrecken Hannover Wurzburg und Mannheim Stuttgart wiesen erstmals eine unterschiedliche Blockteilung auf Ortsfeste Lichtsignale deckten hier nur noch Gefahrenpunkte insbesondere Bahnhofe und Uberleitstellen wahrend auf der dazwischen liegenden Freien Strecke auf einer Lange von bis zu etwa 7 km keine Blocksignale aufgestellt wurden Wahrend nicht LZB gefuhrte Zuge nur mit einem fahrtzeigenden Lichtsignal in den folgenden Blockabschnitt einfahren konnten sogenannter Ganzblockmodus war die freie Strecke in LZB Blockabschnitte von etwa 2500 Metern Lange unterteilt sogenannter Teilblockmodus Fahrt ein LZB gefuhrter Zug dabei in einen freien LZB Blockabschnitt ein dessen zugehoriger H V Blockabschnitt noch nicht frei ist wird das deckende Lichtsignal dunkelgeschaltet Die Teilblockabschnittsgrenzen werden durch Blockkennzeichen gekennzeichnet Die Gleisfreimeldung entspricht jedoch den Teilblockabschnitten An den Tafeln ist vergleichbar mit realen Blocksignalen zu halten wenn das wegen zu geringem Abstand zum vorgelegenen Zug vorgeben wird Daruber hinaus wird die Dunkelschaltung in der LZB Version CIR ELKE auch benutzt wenn ein Widerspruch zwischen der LZB Vorgabe und der ortlich signalisierten Geschwindigkeit besteht Da eine am Signal herabgesetzte Geschwindigkeit bei einem anschliessenden Weichenbereich vom Standort des Signals bis zum Ende des gesamten Bereichs gilt CIR ELKE und ETCS hingegen die Geschwindigkeit nur auf den entsprechenden Streckenelementen z B nur den abzweigenden Weichen des Weichenbereichs einschranken werden Signale bei dieser Diskrepanz ebenfalls dunkelgeschaltet Erstmals kam dieses Betriebsverfahren LZB Fuhrung mit Vorrang der Fuhrerraumsignale vor den Signalen am Fahrweg und dem Fahrplan in der Fahrdienstvorschrift als LZB Fuhrung bezeichnet ab Mai 1988 mit Eroffnung des Teilabschnittes Fulda Wurzburg zum Einsatz Auf den sechs ubrigen LZB Abschnitten in Deutschland hatten aus technischen Grunden zunachst weiterhin Fahrplan und die Signale am Fahrweg Vorrang vor der LZB Auf diesen Streckenabschnitten kam der LZB zunachst eine Vorsignalfunktion zu um die notwendigen Bremswege bei Geschwindigkeiten uber 160 km h zu schaffen Die LZB wurde damit von einem Overlay System zum primaren Signalisierungssystem Blockabschnitte konnten damit auch ohne ortsfeste Signale gebildet werden An die Stelle von Blocksignalen traten LZB Blockkennzeichen Mit der EBO Anderung von Juni 1991 wurde die Moglichkeit mit Systemen wie der LZB auf konventionelle Vor und Hauptsignale zu verzichten nachgezogen In den folgenden Jahren wurden auch die alten LZB 100 Streckeneinrichtungen auf rechnergestutzte Zwei von drei Rechner Systeme der Bauart LZB L72 fur das neue Verfahren umgerustet Die mikroprozessorgestutzte Fahrzeugeinrichtung LZB 80 war 1987 serienreif geworden und wurde fahrzeugseitig zunachst in die Lokomotiven der Baureihe 103 eingebaut spater in die der Reihe 120 und die ICE 1 Streckenseitig konnte aus einer LZB L72 Zentrale ein 50 bis 100 Kilometer langer Abschnitt einer zweigleisigen Strecke gesteuert werden Durch die redundante zwei von drei Rechner Technik konnte auch die Zuverlassigkeit der Streckeneinrichtung deutlich gesteigert werden Durch den Teilblockmodus konnten allein zwischen Fulda und Wurzburg 120 Blocksignale im Umfang von rund zehn Millionen D Mark eingespart werden Plane im Rahmen eines universellen 40 GHz Funksystems fur die ersten beiden deutschen Neubaustrecken auch die Linienzugbeeinflussung auf Funkubertragung umzustellen wurden Ende der 1980er Jahre verworfen Die Gleismagnete der punktformigen Zugbeeinflussung zur Zwangsbremsung bei nicht beachteten Signalen bleiben bei dunkelgeschalteten Signalen wirksam und die Fahrzeugeinrichtung nimmt die Beeinflussungen auch auf ihre Wirkung wird jedoch beim Vorliegen von Fuhrungsgrossen verworfen Durch das Weglassen konventioneller Blocksignale konnten auf den Strecken Hannover Wurzburg und Mannheim Stuttgart uber 30 Millionen DM Investitionskosten gespart werden In den ersten Wochen des ICE Betriebs wurden 1991 bis zu 19 LZB Storungen je 100 000 Zugkilometer registriert Dieser Wert ging bis Anfang 1992 auf wenige Storungen je 100 000 km zuruck Alle weiteren deutschen Neubaustrecken wurden in gleicher Weise ausgerustet zusatzliche Blockstellen mit Lichtsignalen wurden nur noch in Einzelfallen eingerichtet Fahren auf elektronische Signalsicht mit wenigen Signalen Weitere Entwicklungsstufen mit vollstandigem Verzicht auf ortsfeste Signale Fahren auf elektronische Signalsicht ohne Signale sowie das Fahren auf elektronische Sicht im absoluten Bremswegabstand wurden nicht umgesetzt 1990 wurde das Betriebsverfahren LZB Fuhrung mit Vorrang der Fuhrerraumsignale vor den Signalen am Fahrweg und dem Fahrplan auf allen LZB Strecken eingefuhrt In den 1990er Jahren wurde eine Reihe von funktionalen Weiterentwicklungen der LZB diskutiert beispielsweise Rangieren unter LZB die Erteilung von fruhzeitigen Abfahrauftragen fur Guterzuge ab Zulassigkeit der Fahrstrasse sowie die Wiederaufnahme in die LZB an jedem beliebigen Punkt In den 1970er Jahren lag die Voraussicht auf die Strecke bei bis zu funf Kilometern Vor Inbetriebnahme der ersten Neubaustrecken bis 280 km h und 12 5 Gefalle war in den 1980er Jahren eine Weiterentwicklung zur mikroprozessorgestutzen LZB 80 erforderlich Die Voraussicht wurde dabei auf 10 km erhoht Im Netz der Deutschen Bahn liegt sie heute bei einer eingestellten Fahrzeughochstgeschwindigkeit von 200 km h typischerweise bei 7 km zwischen 230 und 280 km h bei 10 km sowie 13 km bei 300 km h Anfang der 1990er Jahre hatte die LZB eine Verfugbarkeit gemessen an der Zahl der zuruckgelegten Streckenkilometer von mehr als 99 9 Prozent erreicht Mitte der 1990er Jahre wurde die LZB 80 16 basierend auf 16 Bit Prozessoren und einer Software in Hochsprache eingefuhrt Im weiteren Verlauf wurden zunehmend mehr Fahrzeuge mit LZB ausgerustet und die LZB per Systemumschaltung in Mehrsystemfahrzeuge integriert LZB Blockkennzeichen an einem Lichtsperrsignal im Bahnhof Weil am Rhein Durch derartige LZB Blockabschnitte kann ein konventioneller Zugfolgeabschnitt in nahezu beliebig kurze Abschnitte unterteilt und die Zugfolge damit verkurzt werden 2002 hatte die Deutsche Bahn 1870 km Strecken und 1700 fuhrende Fahrzeuge mit LZB in Betrieb Daneben waren eine Reihe von Fahrzeugen auslandischer Bahnen mit LZB fur den Verkehr in Deutschland ausgerustet Um 2007 wurde mit der LZB Fahrzeugeinrichtung LZB 80E eine Weiterentwicklung der LZB 80 16 eingefuhrt 2009 hatte die Bundesnetzagentur den Wunsch der DB abgelehnt auf der Oberrheinstrecke alle Zuge ohne CIR ELKE II LZB auszuschliessen oder nachrangig zu behandeln Sie begrundete dies mit nur marginalen Kapazitatsgewinnen und Unangemessenheit des Ausschlusses einiger Wettbewerber zumal bei einem konkreten Konflikt schnellere weniger Kapazitat verbrauchende Zuge ohnehin uber die Priorisierung bei der Trassenvergabe zum Zuge kommen durften Die Frage ob die Ausrustung fuhrender Fahrzeuge mit Linienzugbeeinflussung als Netzzugangskriterium fur die Neubaustrecke Nurnberg Ingolstadt festgelegt werden kann war von August 2011 bis Juni 2012 Gegenstand einer Auseinandersetzung zwischen DB Netz und Bundesnetzagentur Das Oberverwaltungsgericht fur das Land Nordrhein Westfalen gab letztlich der Rechtsauffassung der DB statt und erlaubte ein entsprechendes Kriterium Fur einen als uberlasteten Schienenweg geltenden Teil der Schnellfahrstrecke Hannover Berlin sollen Trassenanmeldungen fur nicht LZB gefuhrte Zuge zukunftig nachrangig behandelt werden Triebfahrzeuge auf LZB Strecken in Deutschland mussen heute mindestens CIR ELKE I fahig sein da mit der Hochrustung 2024 aller deutschen LZB Strecken auf CIR ELKE abgeschlossen wurde Ein LZB Nothalt steht damit nicht mehr zur Verfugung Umsetzung in Osterreich Zum Fahrplanwechsel am 23 Mai 1993 verkehrten in Osterreich erstmals EuroCity Zuge mit einer Geschwindigkeit von 200 km h auf einem 25 Kilometer langen Abschnitt der Westbahn Linz Wels der mit LZB ausgerustet worden war Da in Osterreich die vollstandige Signalisierung samt Blockabschnitte erhalten blieb zeigen die Signale in Osterreich auch bei LZB Fahrt Fahrtbegriffe an Ein Signal das nicht explizit Fahrt oder Fahrverbot aufgehoben anzeigt entspricht nach den bestehenden osterreichischen Bestimmungen einem haltzeigenden Signal und lost eine Zwangsbremsung aus Die LZB wurde spater auf den Abschnitt St Polten Attnang Puchheim ohne die Abschnitte Ybbs Amstetten Linz Kleinmunchen Linz Leonding ausgedehnt Seit 9 Dezember 2012 erlaubt die LZB zwischen St Valentin und Linz Kleinmunchen erstmals eine Hochstgeschwindigkeit von 230 km h die vom Railjet und ICE T auch gefahren wird Im Jahr 2022 wurde die LZB im Abschnitt Linz Attnang Puchheim abgebaut aufgrund der Veralterung der LZB Version in der Leitstelle Wels Ab 2023 veraltet wird dort ETCS Level 2 zum Einsatz kommen Die Ausserbetriebnahme der LZB und Umrustung auf ETCS im verbleibenden Abschnitt St Polten Linz erfolgt bis 2030 Uberlegungen zur Funk Zugbeeinflussung Bereits Ende der 1970er Jahre wurde im Rahmen eines vom deutschen Bundesministerium fur Forschung und Technologie geforderten Projektes die Moglichkeit untersucht die Informationen der LZB per Funk zu ubertragen unter anderem im Bereich von 40 GHz Die Untersuchungen waren zu dem Ergebnis gekommen dass eine Umsetzung zu damaliger Zeit nicht wirtschaftlich war Daruber hinaus blieb offen wie die durch die Leiterschleifen ermoglichte Ortung bei einem Funksystem umgesetzt werden wurde Untersucht wurden verschiedene Moglichkeiten beispielsweise eine Messung der Laufzeit der Funksignale Satellitennavigation oder Datenpunkte im Gleis Anfang der 1990er Jahre folgte eine zweijahrige durch das Forschungsministerium und den Senat von Berlin finanzierte Studie in der die Mobilfunktechnik GSM als Basis fur die Entwicklung eines Funksystems fur die Bahn ausgewahlt wurde Das heute von der EU zur Einfuhrung vorgeschriebene europaweit einheitliche Zugbeeinflussungssystem ETCS fuhrt die Entwicklungen der zuvor in Deutschland erprobten Funkzugbeeinflussung weiter Ab der Ausbaustufe ETCS Level 2 werden die Daten zum Fahren auf elektronische Signalsicht mit der GSM Variante GSM R zwischen Fahrzeug und Streckenzentrale ausgetauscht Zur sicheren Ortsbestimmung werden im Gleis installierte Eurobalisen Datenpunkte verwendet Entwicklungsschritte Die folgende Tabelle gibt einen Uberblick uber die wichtigsten Entwicklungsschritte der LZB Daten Beschreibung Steuerung Lange1963 Testfahrten auf der Strecke Forchheim Bamberg1965 200 km h Prasentationsfahrten auf der Strecke Munchen Augsburg mit der Baureihe 103 01965 1974 Entwicklung und Sicherheitsnachweis1974 1976 Betriebserprobung auf der Strecke Bremen Hamburg 3 Zentralen 90 km1976 Ausbau der Strecke Hamm Gutersloh1978 1980 S Bahn Pilotprojekt in Madrid Renfe 1 Zentrale 28 km1980 1985 Serienausrustung bei der Deutschen Bundesbahn 7 Zentralen 309 km1987 Betriebsbeginn auf den Neubaustrecken Fulda Wurzburg und Mannheim Hockenheim 4 Zentralen 125 km1987 Beschluss der Osterreichischen Bundesbahnen zur Einfuhrung von LZB1988 1990 Weitere Ausbaustrecken bei der DB 2 Zentralen 190 km1991 Inbetriebnahme Neubaustrecken Hannover Fulda und Mannheim Stuttgart und weiterer Ausbaustrecken 10 Zentralen 488 km1992 Neubaustrecke Madrid Cordoba Sevilla RENFE zur Weltausstellung in Sevilla 8 Zentralen 480 km1992 Erster Abschnitt der Strecke Wien Salzburg bei der OBB 1 Zentrale 30 km1995 Inbetriebnahme S Bahn Linie Cercanias C5 Madrid 2 Zentralen 45 km1998 Inbetriebnahme Neubaustrecke Hannover Wolfsburg Berlin und Ausbaustrecke Wurzburg Nurnberg mit ESTW Koppelung 6 Zentralen1999 Inbetriebnahme CIR ELKE Pilotstrecke Offenburg Basel mit CE1 Systemsoftware 4 Zentralen2001 Inbetriebnahme CIR ELKE Pilotstrecke Achern 1 Zentrale2002 Inbetriebnahme Schnellfahrstrecke Koln Rhein Main CE2 Software mit Weichenausdehnung 4 Zentralen2003 Inbetriebnahme Ausbaustrecke Koln Duren Aachen CE2 Software auf ABS 1 Zentrale 40 km2004 Inbetriebnahme Ausbaustrecke Hamburg Berlin CE2 Software auf ABS 5 Zentralen2004 Inbetriebnahme S Bahn Munchen CE2 Software mit teils stark verkurzten Blockabstanden bis zu 50 m 1 Zentrale2006 Inbetriebnahme Ausbaustrecke Berlin Halle Leipzig CE2 Software in ETCS Doppelausrustung 4 Zentralen2006 Inbetriebnahme Schnellfahrstrecke Nurnberg Ingolstadt CE2 Software mit Weichenausdehnung 2 Zentralen Verschiedene Uberlegungen im Sinne einer vorausschauenden konfliktvermeidenden Fahrweise uber die LZB auch Geschwindigkeiten unterhalb der sicherheitsrelevanten Beschrankungen zu signalisieren wurden nicht umgesetzt Fehlfunktionen Obwohl das LZB System als sehr sicheres Zugbeeinflussungssystem gilt ereigneten sich unter LZB einige gefahrliche Ereignisse Am 29 Juni 2001 ereignete sich auf der Bahnstrecke Leipzig Dresden im Bahnhof Oschatz beinahe ein Unfall Per LZB wurde dem Lokfuhrer des ICE 1652 auf der Fahrt von Dresden nach Leipzig wegen einer Signalstorung in Dahlen fur den Wechsel in das Gegengleis auf dem Westkopf des Bahnhofs Oschatz eine Geschwindigkeit von 180 km h signalisiert obwohl die Weichenverbindung nur mit 100 km h befahren werden darf Der Triebfahrzeugfuhrer erkannte die abzweigend gestellten Weichen und bremste noch auf 170 km h herunter Der Zug entgleiste nicht fuhr noch bis Leipzig Hbf weiter und wurde dort untersucht Nachdem ein Interregio am selben Tag ebenfalls Probleme mit der LZB hatte wurde diese vorubergehend ausser Betrieb genommen Aufgrund eines Fehlers im Abgleich von LZB und ESTW Daten kannte die LZB Streckenzentrale die Geschwindigkeitseinschrankung nicht Am 17 November 2001 kam es in Bienenbuttel Bahnstrecke Lehrte Hamburg Harburg zu einem Beinahe Unfall Der Lokfuhrer des ICE 91 Hamburg Wien sollte einen liegengebliebenen Guterzug im Gegengleis uberholen Dabei befuhr er eine fur 80 km h zugelassene Weichenverbindung mit 185 km h ohne zu entgleisen Als Ursache wird die fehlerhafte Ausfuhrung einer Schaltungsanderung im Stellwerk vermutet die bei einer Anhebung der Uberleitgeschwindigkeit von 60 auf 80 km h stattfand Bei 60 km h wird im Netz der ehemaligen Deutschen Bundesbahn bei Anwendung des H V Signalsystems der Signalbegriff Langsamfahrt erwarten zusammen mit einem Geschwindigkeitsanzeiger angezeigt Bei Ausfall des Geschwindigkeitsanzeigers wird nur noch Langsamfahrt erwarten alleine angezeigt und damit reduzierte Geschwindigkeit von 40 km h signalisiert Dadurch ist in diesem Fall keine zusatzliche Uberwachung des Geschwindigkeitsanzeigers notwendig Bei einer Uberleitgeschwindigkeit von 80 km h wird der Signalbegriff Fahrt erwarten zusammen mit dem Geschwindigkeitsanzeiger angezeigt Fallt in diesem Fall der Geschwindigkeitsanzeiger aus wurde ohne zusatzliche Abhangigkeit die Streckenhochstgeschwindigkeit gelten Daher ist ab 80 km h zwingend die Uberwachung des Geschwindigkeitsanzeigers notwendig Aufgrund des Fehlens dieser Abhangigkeit die die Anschaltung des Fahrtbegriffes nur beim korrekten Leuchten des Geschwindigkeitsanzeigers ermoglicht wurde an diesem Tag falschlicherweise die fur gerade Durchfahrten zugelassene Geschwindigkeit von 200 km h statt der abzweigend zugelassenen 80 km h per LZB an den Zug ubermittelt da die LZB Streckenzentrale die Signalbilder der Lichtsignale zur Ermittlung der Fuhrungsgrossen abgreift Als Sofortmassnahme untersagte DB Netz LZB gefuhrte Fahrten im Gegengleis Als zwei Tage spater ein Triebfahrzeugfuhrer mit nicht plausiblen Fuhrungsgrossen an ein haltzeigendes Signal herangefuhrt wurde wurde die betroffene LZB Zentrale Celle vorubergehend ausser Betrieb genommen und uberpruft Die Auswertung der PZB Registrierung des Fahrzeugs ergab dass keine Beeinflussung 1000 2000 Hz registriert wurde Am 9 April 2002 kam es auf der Schnellfahrstrecke Hannover Berlin zu einem Beinahe Zusammenstoss Nachdem in Fallersleben der Rechner der LZB Streckenzentrale ausgefallen war kamen auf beiden Streckengleisen jeweils zwei Zuge in einem Blockabschnitt Teilblockmodus zum Halten Beim Hochfahren des Rechners wurde dabei dem jeweils hinteren Zug eine Geschwindigkeit von 160 km h signalisiert dem vorderen jeweils 0 km h Einer der beiden nachfahrenden Lokfuhrer sah den vor ihm stehenden Zug der andere fragte sicherheitshalber in der Betriebszentrale an die ihn vor Abfahrt warnte Infolge des Vorfalls erliessen DB Cargo und DB Personenverkehr am 11 April eine Weisung an ihre Triebfahrzeugfuhrer mit der besondere Vorsichtsmassnahmen bei LZB Ausfall im Teilblockmodus angeordnet wurden Als Ursache gilt ein Softwarefehler Komponenten und AufbauFur einen LZB Betrieb mussen sowohl die Strecke als auch das Triebfahrzeug oder auch der Steuerwagen fur LZB ausgerustet sein Dazu werden die im Folgenden beschriebenen Komponenten benotigt Streckeneinrichtungen Linienleiter im GleisLinienleiterverlegung Fur die Ubertragung zwischen Fahrzeug und Streckenzentrale verwendet die LZB einen im Gleis verlegten Linienleiter Der Bereich in dem dieselbe Information ubertragen wird heisst Schleifenbereich Der Linienleiter wird in Schleifen verlegt Dabei wird ein Strang in Gleismitte der andere im Schienenfuss verlegt Nach 100 Metern werden die Strange getauscht gekreuzt an dieser Stelle andert sich die Phasenlage des Signals um 180 Dies eliminiert elektrische Storungen und wird vom Fahrzeug zur Ortung genutzt Das Fahrzeuggerat erkennt durch zwei aktive Antennen die Phasensprunge Diese Orte werden auch als Kreuzungsstellen oder 100 m Punkte bezeichnet Maximal konnen 126 Kreuzungsstellen in einem Schleifenbereich vorhanden sein wodurch sich dieser in maximal 127 Fahrorte teilt und sich somit eine maximale Lange von 12 7 km pro Schleifenbereich ergibt In Gleismitte wird das Linienleiterkabel auf jeder zweiten Schwelle von einem Kunststoffclip gehalten im Schienenfuss durch je eine Schienenfussklammer alle 25 Meter Die Kreuzungsstellen Schleifenenden und Einspeisestellen werden insbesondere zum Schutz vor Beschadigungen durch Baumaschinen mit Profilblechen abgedeckt Einspeisestellen und Schleifenenden liegen in der Regel zwischen zwei Kreuzungsstellen damit werden beim Ausfall einer Kurzschleife im Regelfall nur drei Kreuzungsstellen nicht erkannt Linienleiterverlegung in KurzschleifenKurzschleifentechnik Bei der Kurzschleifentechnik werden die Schleifenbereiche in einzelnen Schleifen von maximal 300 Meter Lange verlegt Die Speisung der Kurzschleifen erfolgt parallel so dass in einem Schleifenbereich in allen Kurzschleifen die gleiche Information ubertragen wird Die Verbindung zwischen Fernspeisegerat und Streckenzentrale wird uber vier Adern eines sternviererverseilten Signalkabels hergestellt an dem alle Speisegerate eines Schleifenbereichs angeschlossen werden Der Vorteil der Kurzschleifentechnik ist die hohere Ausfallsicherheit Bei einer Unterbrechung des Linienleiters fallt maximal ein 300 Meter langes Teilstuck mit drei Kreuzungsstellen aus Diese Unterbrechung kann vom Fahrzeug uberbruckt werden Die Kurzschleifenfernspeisegerate werden uber ein zusatzliches Stromversorgungskabel mit einer Versorgungswechselspannung von 750 Volt gespeist Langschleifentechnik Der Schleifenbereich besteht aus einer einzigen Schleife die von einem Fernspeisegerat gespeist wird Dieses ist ungefahr in der Schleifenmitte positioniert Die Verbindung zur Streckenzentrale wird ebenfalls mit vier Adern eines sternviererverseilten Signalkabels hergestellt Nachteil dieser Verlegeart ist dass bei einem Ausfall des Fernspeisegerates oder der Unterbrechung des Linienleiters der ganze Schleifenbereich ausfallt und die Ortung der Fehlerstelle nur durch Absuchen des gesamten Schleifenbereiches moglich ist Ausserdem fallt die linienformige Zugbeeinflussung im gesamten Schleifenbereich aus Aus diesem Grund werden Langschleifen nicht mehr eingebaut vorhandene Langschleifenbereiche wurden auf Kurzschleifentechnik umgerustet Topologie Topologie einer LZB Zentrale Fur die Ausrustung einer Strecke mit LZB stehen pro Streckenzentrale 16 Schleifenbereiche zur Verfugung Den Wechsel eines Schleifenbereichs zeigt der Bereichkennungswechsel BKW Die Schleifenbereiche konnen je nach Streckengegebenheiten parallel und oder hintereinander angeordnet werden Fur jedes mit LZB ausgerustete Uberholgleis wird bei LZB L72 ein eigener Schleifenbereich benotigt Wenn Schleifenbereichsnummern aufgrund der auszurustenden Streckenlange knapp waren wurde deshalb haufig auf die Ausrustung von Uberholgleisen verzichtet Ab L72 CE kann der Verbrauch an Schleifenbereichsnummern reduziert werden Der Schleifenbereich eines Uberholgleises kann in Uberholgleisen von Nachbarbahnhofen fortgefuhrt werden sofern die maximale Schleifenlange von 12 7 km noch nicht ausgeschopft wurde Rein theoretisch konnen mit einer Streckenzentrale 101 6 km zweigleisige Strecke ohne Uberholungen ausgerustet werden Bei Bedarf werden weitere Streckenzentralen eingesetzt Benachbarte Streckenzentralen heissen Nachbarzentralen Streckengerate Streckenseitig werden im Wesentlichen folgende Einrichtungen benotigt LinienleiterkabelLZB Streckenzentrale Der Kern der LZB Streckenzentrale besteht aus einem zwei aus drei Rechnersystem das die Fahrbefehle fur die Fahrzeuge berechnet Uber spezielle Modemverbindungen wird die Verbindung zwischen Fernspeisegeraten Nachbarzentralen und Stellwerken unterhalten Die Ubertragung der Information erfolgt auf dem Informationskabel in dem je Ubertragungskanal Schleifen Nachbarzentralen Stellwerke ein Kabelvierer je zwei Adern fur Richtung Zentrale Gerate bzw Gerate Zentrale vorhanden ist Die Verbindung zu Elektronischen Stellwerken ESTW erfolgt uber eine LAN Koppelung Zur Anbindung der LZB an Elektronische Stellwerke wurden ab 1993 LANCOP 1 Koppelrechner entwickelt die auf Grundlage der OSI konformen Protokollbasis MAP 3 0 und MMS das CirNet Ubertragungsprotokoll realisierten Damit wurde eine Verbindung zwischen ESTW und mittels paralleler Schnittstelle LZB Rechnern hergestellt Diese Rechner haben eine weite Verbreitung erfahren In den 2000er Jahren wurden die LANCOP 2 Rechner entwickelt Auf der Grundlage von LAN des IP Protokolls und des Betriebssystems SELMIS wurde eine serielle Schnittstelle zum LZB Rechner bereitgestellt Fur diese LZB seitig nur mit CIR ELKE nutzbare Schnittstelle erhielten LZB Rechner eine beschleunigte serielle Schnittstelle mit 38 400 Baud Wesentliche Ziele der Weiterentwicklung waren neben einer technischen Modernisierung auch gesteigerte Anforderungen an Verfugbarkeit geringere Signalverarbeitungszeiten und der Wunsch mehrere Zugsicherungssysteme anbinden zu konnen Mit dieser Schnittstelle konnen auch ETCS Zentralen angebunden werden Uber die LAN Kopplung werden dabei von den ESTW zur LZB bzw ETCS Zentrale Elementzustande Weichen Signale ubermittelt und in Gegenrichtung fahrtabhangige Steuerkommandos ubermittelt Damit einhergehend wurde zwischen der Deutschen Bahn Alcatel und Siemens SAHARA Safe Highly Available and Redundant als Standard Schnittstelle fur Zugsicherung definiert Das Protokoll definiert zwischen der Anwendungs und der Transportschicht des OSI Modells eine Sicherheits und Sendewiederholungs sowie eine Redundanzschicht Es wurde spater auch auf der HSL Zuid und im Lotschberg Basistunnel eingesetzt Langwierige internationale Standardisierungsentscheidungen sollten nicht abgewartet werden An eine LZB Zentrale L72 Stand 2006 konnen bis zu zehn Relaisstellwerke uber Fernsteuergestelle oder bis zu zehn Elektronische Stellwerke uber LAN COP L Schnittstelle sowie bis zu sechs Nachbar LZB Zentralen angebunden werden Jede LZB Zentrale kann 16 Linienleitkanale mit bis zu 12 7 km Lange 127 Fahrorte verwalten Einer maximalen Lange von 101 6 km zweigleisiger Strecke stehen in der Praxis maximale Langen von 60 km gegenuber Fernspeisegerate bei Kurzschleifentechnik Kurzschleifenfernspeisegerate KFS Das Fernspeisegerat speist die von der LZB Zentrale kommenden Informationen des Informationskabels in den Linienleiter ein Vom Fahrzeug gesendete Antworttelegramme werden verstarkt und uber das Informationskabel an die LZB Zentrale gesendet In einem Schleifenbereich bei Kurzschleifentechnik in allen Kurzschleifen wird von der LZB Zentrale die gleiche Information eingespeist Voreinstellungsgerate oder Anfangsgerate VE Gerate A Gerate Gerate fur die Erzeugung von Voreinstelltelegrammen in den Voreinstellschleifen Potentialtrennschranke Durch Fahrleitungseinflusse kommt es im Informationskabel zu Fremdspannungen Durch eine galvanische Trennung in den Potentialtrennschranken wird die Einhaltung der maximalen Fremdspannungswerte innerhalb des Informationskabels erreicht Verstarkerschranke Wegen der teils grossen Entfernung zwischen Streckenzentrale und Fernspeisegeraten ist eine Verstarkung der Signale erforderlich Hierzu werden Verstarkerschranke verwendet Linienleiterschleifen im Gleis Die Linienleiterschleifen werden mit einem stabilen einadrigen Kabel verlegt das den Witterungseinflussen widersteht und welches die notwendigen Antenneneigenschaften besitzt siehe Bild Ein LZB BereichskennzeichenEin Blockkennzeichen fur LZB und ETCS auf der Neubaustrecke Nurnberg IngolstadtZusatzliche LZB Signalisierung v a Blockkennzeichen Bereichskennzeichen Blockkennzeichen werden an den Stellen aufgestellt an denen ein LZB Blockabschnitt endet und die nicht durch den Standort eines Hauptsignals gekennzeichnet sind sie markieren die Stelle an der ein LZB gefuhrter Zug bei einer Betriebsbremsung zum Stehen kommen muss wenn die Einfahrt in den folgenden Blockabschnitt nicht gestattet ist Bereichskennzeichen signalisieren einen Bereichskennungswechsel und damit den Ubergang in den nachsten Schleifenbereich An den Bereichskennungswechseln BKW konnen Zuge auch ohne Voreinstellung durch ein Anfangsgerat in die LZB Fuhrung aufgenommen werden Fahrzeugausrustung Allgemeines Eine LZB Antenne an einer Lokomotive der Baureihe 189LZB Fuhrerstandsanzeige im ICE 4 Die fahrzeugseitige Ausrustung fur den LZB Betrieb besteht in Deutschland aus folgenden Komponenten LZB Fahrzeugrechner Abhangig vom Hersteller gibt es zwei Konzepte Die aus drei parallel arbeitenden Rechnern bestehende Rechnereinheit bildet durch einen programmgesteuerten Datenvergleich ein sicherungstechnisches Schaltwerk Es lauft eine diversitare Software auf einem sicheren Rechner Stromversorgung Die Stromversorgung ist redundant aufgebaut und wird vom Fahrzeugrechner uberwacht Sende Empfangsantennen Die Antennen des Fahrzeuges sind ebenfalls redundant ausgelegt es gibt je zwei Sende und zwei bzw vier Empfangsantennen zwei Paar Die Anzahl der Empfangsantennen ist fahrzeugspezifisch und wird vom Hersteller festgelegt Wegsensorik Pent Fur die Weg und Geschwindigkeitsmessung werden zwei Rad Sensoren Wegimpulsgeber und ein Beschleunigungsmesser oder ein Radar verwendet Verschiedene Herstellerkonzepte Zwangsbremseingriff Beim Zwangsbremseingriff erfolgt eine Sicherheitsreaktion auf die Hauptluftleitung diese wird entluftet Der Zwangsbremseingriff erfolgt auf die Hauptluftleitung entweder uber eine sogenannte Bremswirkgruppe oder uber eine Sicherheitsschleife Zugdateneinsteller Am Zugdateneinsteller werden alle relevanten Daten des Zuges eingegeben wie z B Zuglange Bremsart Bremshundertstel und maximale erlaubte Geschwindigkeit des Zuges Bei Fahrzeugen mit MVB wie z B bei den Lokomotiven der Reihe 185 erfolgt die Zugdateneingabe uber das Driver Machine Interface DMI Modulare Fuhrerraumanzeige MFA Die modulare Fuhrerraumanzeige gibt dem Triebfahrzeugfuhrer einen vollstandigen Uberblick uber die vorausliegende Strecke Die drei wesentlichen Fuhrungsgrossen sind die erlaubte Sollgeschwindigkeit in Verbindung mit einer Zielgeschwindigkeit die in einer Zielentfernung hochstens gefahren werden darf Diese Werte sind im MFA analog und bei neueren Baureihen digital mittels Display angezeigt Uber Leuchtmelder im MFA werden dem Triebfahrzeugfuhrer Status oder Stormeldungen und weitere wichtige Informationen angezeigt z B bei LZB Ubertragungsausfalle LZB Nothaltauftrag Bei Fahrzeugen mit MVB z B Baureihe 185 ist das MFA durch ein DMI Driver Machine Interface ersetzt worden Das DMI bietet eine grossere Flexibilitat hinsichtlich der Gestaltung Modelle Das erste entwickelte Fahrzeuggerat wurde als LZB 100 bezeichnet Da sich diese Technik nicht bewahrte begann ab 1980 die Entwicklung des mikroprozessorgesteuerten Fahrzeuggerates LZB 80 durch das Konsortium LZB 80 der Firmen Siemens und SEL spater Alcatel und Thales heute Hitachi Rail Im Laufe der Zeit wurden vier Hardware Generationen des Fahrzeuggerates entwickelt LZB 80 8 System auf Basis des Intel 8085 LZB 80 16 CE System auf Basis des Intel 80186 LZB 80 16 CE MVB System auf Basis des Intel 80386 LZB 80E System mit MVB auf Basis des Intel Pentium M bzw Celeron M 1997 mit Bestellung der TRAXX F140 AC Lokomotiven begann bei Bombardier die Entwicklung des EBICAB Systems welches 2003 die Zulassung fur die LZB 80 Betriebserprobung erhielt Daneben wurden auch LZB 80 Systeme als Specific Transmission Module STM von Thales und Siemens entwickelt Uberblick uber die SignalisierungNeben den Fuhrungsgrossen Soll und Zielgeschwindigkeit sowie Zielentfernung konnen per LZB auch weitere Auftrage ubertragen werden LZB Endeverfahren Fruhestens 1700 m vor Ende der LZB muss der Triebfahrzeugfuhrer das vorausliegende Ende der Linienzugbeeinflussung quittieren und bestatigen dass er ab sofort wieder auf die ortsfesten Signale und die Geschwindigkeiten des Fahrplans achtet Ein gelber Leuchtmelder Ende signalisiert das Ende der LZB Fuhrung nach Ablauf der Zielentfernung LZB Ersatzauftrag Bei Storungen kann der Fahrdienstleiter einen Ersatzauftrag zur Weiterfahrt an einem LZB Halt geben Im Fuhrerstand leuchtet der Leuchtmelder E 40 Soll und Zielgeschwindigkeit werden auf 40 km h beschrankt die Zielentfernung entspricht der Gultigkeit des Ersatzauftrages LZB Vorsichtauftrag Der Fahrdienstleiter kann ein Fahren auf Sicht auch per LZB anordnen Im Fuhrerraum blinkt dann der Leuchtmelder V 40 der nach Quittierung durch den Lokfuhrer in ein Ruhelicht ubergeht Die Zielentfernung und Zielgeschwindigkeit werden nach der Quittierung durch den Tf dunkelgeschaltet und Vsoll zeigt 40 km h Ca 50 Meter nach Vorbeifahrt an der LZB Blockstelle erscheinen die neuen Fuhrungsgrossen mit Zielentfernung und Zielgeschwindigkeit Der Auftrag auf Sicht zu fahren gilt allerdings bis 400 Meter nach dem folgenden Hauptsignal Fur die 2002 eroffnete Neubaustrecke Koln Rhein Main wurde eine selektive Herabsetzung der Hochstgeschwindigkeit seitenwindempfindlicher Fahrzeuge eingefuhrt Nachdem sich die eingesetzten ICE 3 im Regelbetrieb als weniger seitenwindempfindlich als angenommen erwiesen wird diese Funktionalitat im Regelbetrieb nicht mehr genutzt Zur Inbetriebnahme der ersten Neubaustrecken Abschnitte standen noch nicht genugend druckertuchtigte Fahrzeuge zur Verfugung Fahrzeuge ohne Druckschutz wurden dabei von der LZB durch eine Einstellung am Zugdatensteller erkannt die Hochstgeschwindigkeit des Zuges in der Folge auf 180 km h beschrankt Diese Option ist heute nicht mehr relevant Weitere Auftrage sind LZB Fahrt LZB Halt LZB Gegengleisfahrauftrag LZB Nothalt nicht bei CIR ELKE LZB Auftrag Stromabnehmer senken LZB Nachfahrauftrag nur bei CIR ELKE Zusatzliche Funktionen Uber die LZB konnen auch automatisch die Heraufsetzung der Oberstrombegrenzung maximal zugelassene Stromaufnahme des Zuges sowie die Freigabe der Wirbelstrombremse auf Neubaustrecken Koln Rhein Main und Nurnberg Ingolstadt fur Betriebsbremsungen angezeigt werden Auf den Ausbaustrecken Berlin Leipzig und Berlin Hamburg wird das Auslegen des Hauptschalters an Schutzstrecken ebenfalls uber die LZB angesteuert Signale El 1 bzw El 2 Untersucht wurde eine Erganzung der LZB um auf den Schnellfahrstrecken Hannover Wurzburg und Mannheim Stuttgart Begegnungen von Personen und Guterzugen in Tunneln sicher ausschliessen zu konnen Tunnelbegegnungsverbot Damit konnte insbesondere die zulassige Hochstgeschwindigkeit in Tunneln von 250 auf 280 km h angehoben werden Zwischen Guter und Personenzugen wurde dabei ausgehend von der Bremsarteinstellung am LZB Fahrzeugrechner unterschieden werden Signale vor Tunneleinfahrten wurden dabei die Funktion von sogenannten Gate Signalen ubernehmen um Zugbegegnungen von Personen und Guterzugen in Tunneln zu verhindern In den Jahren 1976 und 1980 fanden auf der LZB Versuchsstrecke Baden Koblenz Versuchsfahrten fur Automatic Train Operation ATO statt In Spanien gab es zwischen 1977 und 1979 zwischen Madrid Atocha und Pinar de las Rozas ATO Fahrten im fahrplanmassigen Dienst mit Fahrgasten Die Entwicklung wurde aus Kostengrunden sowie wegen der Einfuhrung von ETCS eingestellt Nicht umgesetzte Funktionen Weitere Uberlegungen zur Erweiterung der LZB Funktionalitat wurden nicht umgesetzt Die Gesamtkonzeption der LZB sah die Moglichkeit einer spateren Einbeziehung von Aufgaben einer zentralen Betriebslenkung und automatischer Zuglenkung vor Uberlegt wurde auch bei dichter Streckenbelegung dispositiv niedrigere Geschwindigkeiten an die Fahrzeuge zu signalisieren um einen flussigeren energiesparenden Betrieb zu unterstutzen Uberlegt wurde beim Ziehen der Notbremse in einem Abschnitt mit Notbremsuberbruckung per LZB automatisch eine 60 km h Langsamfahrstelle am Ende dieses Abschnitts einzurichten Diese Option war Ende der 1980er Jahre zum Einsatz auf den vor Eroffnung stehenden Neubaustrecken geplant wurde aber nicht umgesetzt Eine Option sah vor die Hochstgeschwindigkeit mit der sich Guter und Personenzuge in Tunneln begegnen durfen zu beschranken Dabei ware eine bewegliche Langsamfahrstelle von definierter Lange fur die Guterzuge eingerichtet worden Da Zugbegegnungen von Guter und Personenzugen in den Tunneln der Schnellfahrstrecken fahrplanmassig ausgeschlossen werden fand diese Option keine Umsetzung FunktionsweiseOrtung Kreuzung zwischen den beiden Linienleitern Wie schon oben beschrieben werden die Linienleiter nach 100 5 Metern gekreuzt d h der in der Mitte verlegte Linienleiter wird mit dem am Schienenfuss verlegten Linienleiter vertauscht Zwei Kreuzungsstellen begrenzen in der LZB einen Fahrort im Folgenden Grobort genannt Groborte werden in Zahlrichtung von 1 beginnend aufwarts gezahlt gegen Zahlrichtung von 1 255 abwarts Je Schleifenbereich sind maximal 127 Groborte moglich die in Zahlrichtung die Nummern 1 bis 127 gegen Zahlrichtung die Nummern 1 255 bis 127 129 haben Das Fahrzeuggerat unterteilt uber die Wegsensorik die Groborte nochmals in 8 Feinorte 0 bis 7 mit einer Lange von 12 5 Metern Um Toleranzen in der Wegsensorik und bei der Linienleiterverlegung auszugleichen nutzt das Fahrzeuggerat die Phasensprunge der Kreuzungsstellen fur die Fahrortzahlung Mit Erkennen der Kreuzungsstelle wird der Feinortzahler auf 0 gesetzt und der Grobortzahler entsprechend der Fahrrichtung weitergezahlt Der in Zahlrichtung letzte Feinort wird entsprechend verlangert oder verkurzt Die fur die Linienzugbeeinflussung erwogene optische Erfassung von Oberflachen Unregelmassigkeiten kam letztlich bei der ETCS Ausrustung der ICE 1 Triebzuge in den 2010er Jahren zur Anwendung Um Messfehler durch Radabnutzung Gleiten Schlupf und Schleudern zu vermeiden wurden bei der Entwicklung der LZB verschiedene Ansatze untersucht Empfohlen wurde eine Kombination von Dopplerradar elektro optischer Erfassung von Unregelmassigen von Oberflachen oder Zahlung der Radimpulse jeweils kombiniert mit Erfassung der Phasensprunge Im Gegensatz zur Odometrie von ETCS ist die Weg und Geschwindigkeitsmessung der LZB Fahrzeugeinrichtung vergleichsweise einfach und kommt mit einem Wegimpulsgeber und einem wartungsfreien Beschleunigungsmesser aus Sie musste allerdings zur Steigerung der Betriebssicherheit insbesondere im Geschwindigkeitsbereich oberhalb 200 km h nachtraglich verbessert werden Ab 1992 wurden die Fahrzeuggerate mit zusatzlichen Ortungsrechnern erganzt In der damaligen Hardware Generation LZB 80 8 waren an der Ortung sogenannte Teilwegrechner die zentrale Logik sowie die Linienleiterempfanger beteiligt Diese Komponenten kommunizierten untereinander mit einem festen Takt von etwa 70 Millisekunden Alleine durch diese Taktung konnte sich im ungunstigsten Fall eine Ortungsungenauigkeit von 486 cm ergeben Die Ortungsrechner verbesserten dies indem ihnen die Signale der Wegimpulsgeber sowie vom Linienleiterempfanger das noch frequenzmodulierte Originalsignal aus dem Linienleiter digital zur Verfugung gestellt wurde Durch zeitlichen Vergleich der Signale von den verschiedenen Fahrzeugantennen konnten die Ortungsrechner eine von den Wegimpulsgebern an den Radsatzen unabhangige Geschwindigkeitsmessung vornehmen Diesen Messwert verglichen sie mit dem Messwert der Wegimpulsgeber an den Radsatzen Als Ergebnisse lieferten die Ortungsrechner an die zentrale Logik einen Korrekturwert fur die Wegmessung sowie eine Bewertung der erkannten Kreuzungsstelle des Linienleiters Abweichungen von mehr als 20 zwischen den Messungen der Wegimpulsgeber und der Ortungsrechner sind nur plausibel falls die Kreuzungsstelle des Linienleiters einen Bereichskennungswechsel darstellt Ob ein Bereichskennungswechsel vorliegt muss die zentrale Logik ermitteln Falls kein Bereichskennungswechsel vorliegt dann wurde eine Pseudo Kreuzungsstelle erkannt die nicht zur Ortung herangezogen werden darf Durch die nachgerusteten Ortungsrechner sank die rechnerische Ortungsungenauigkeit bis auf etwa 5 cm Aufnahme in die LZB Beginn der LZB auf einer Strecke bei Bremen Voraussetzung fur die Aufnahme in die LZB ist eine funktionsbereite LZB Fahrzeugausrustung Ferner mussen gultige Zugdaten Bremsart Bremsvermogen in Bremshundertsteln Zuglange Zughochstgeschwindigkeit am Zugdateneinsteller eingegeben worden sein Fahrt ein entsprechender Zug in einen mit Linienleiter ausgerusteten Bereich wird er nur dann in die LZB Fuhrung aufgenommen wenn der Fahrzeugrechner einen Wechsel der Bereichskennung BKW erkennt An definierten Einfahrstellen wird der Wechsel der Bereichskennung durch Voreinstellschleifen vorbereitet In den von Anfangsgeraten gespeisten Voreinstellschleifen werden fest parametrierte Voreinstelltelegramme ubertragen die die notwendigen Informationen Fahrortnummer Fahrtrichtung Ubergang zum Linienleiter am 50 oder 100 m Punkt des Einfahrortes ubermitteln Mit dem Erreichen des eigentlichen LZB Bereichs empfangt das Fahrzeug die Aufruftelegramme der Zentrale fur den Einfahrort und antwortet mit dem angeforderten Ruckmeldetelegramm Daraufhin beginnt die Zentrale Kommandotelegramme an das Fahrzeug zu senden Je nach ortlichen Verhaltnissen wird die Anzeige im MFA mit dem Passieren des nachsten Signales oder des BKWs am Zugschluss hell geschaltet Fahrt ein Fahrzeug ohne eine Voreinstellschleife zu passieren in einen LZB Bereich so erfolgt die Aufnahme in die LZB erst hinter dem nachsten Bereichskennzeichenwechsel BKW mit Grundstellung Das Fahrzeuggerat empfangt die Aufruftelegramme der Zentrale es kann wegen der fehlenden Ortungsinformation jedoch nicht antworten Mit Uberfahren des BKWs empfangt das Fahrzeuggerat Aufruftelegramme mit geanderter Bereichskennung Darauf wird im Fahrzeuggerat der Fahrortzahler zuruckgesetzt auf 1 bei Fahrt in Zahlrichtung 1 bei Fahrt gegen Zahlrichtung und die ortsfesten Aufruftelegramme des am BKW befindlichen Einfahrortes werden beantwortet Die Aufnahme in die LZB erfolgt dann wie oben beschrieben Betrieb Im Betrieb sendet die Zentrale Aufruftelegramme mit den Fuhrungsgrossen Bereichskennung Fahrortnummer Fahrtrichtung Bremskurve und den Zielinformationen an das Fahrzeug Das Fahrzeug ubermittelt im Antworttelegramm seine Zugdaten Fahrortquittung Bremscharakter Feinort und Geschwindigkeit Aus den gemeldeten Fahrzeugdaten dem vom Stellwerk ubermittelten Streckenzustand Weichen Signalstellungen und den in der Zentrale hinterlegten Streckenprofilen ermittelt die Zentrale die Fahrkommandos und ubermittelt diese mit dem nachsten Aufruftelegramm an das Fahrzeug Hier werden diese im Fuhrerstand signalisiert Jeder Zug wird abhangig von der Anzahl der LZB gefuhrten Zuge zwei bis funfmal pro Sekunde aufgerufen Erkennt das Fahrzeuggerat eine oder zwei Kreuzungsstellen nicht wird uber die Wegsensorik am 100 m Punkt eine Kreuzungsstelle simuliert Wird die darauffolgende Kreuzungsstelle erkannt kann unter LZB Fuhrung weitergefahren werden Werden mehr als drei hintereinanderliegende Kreuzungsstellen nicht erkannt sind also zwei Kurzschleifen in Folge gestort fallt das Fahrzeug aus der LZB Fuhrung Aufgrund der begrenzten Leistungsfahigkeit fruherer LZB Fahrzeuggerate wird die Bremskurve bei der LZB bis heute in der Streckenzentrale berechnet und auf das Fahrzeug in Form einer Codenummer und einem standardisierten Bremskurven Segment ubertragen Triebfahrzeuge und Steuerwagen verfugen fur den LZB Betrieb uber eine eindeutig zugeordnete Fahrzeugnummer Ermittlung der Soll Geschwindigkeit Darstellung der Soll und Uberwachungsgeschwindigkeit Die wesentliche Aufgabe der LZB ist die Vorgabe und Uberwachung der zulassigen Geschwindigkeit Dazu ubermittelt die Streckenzentrale eine Fuhrungsgrosse XG und die zugrundeliegende Bremsparabel an das Fahrzeug Die Fuhrungsgrosse kennzeichnet den Bremsweg bis zu einem Haltepunkt Im Falle eines Geschwindigkeitswechsels kann dieser Haltepunkt auch fiktiv sein Aus der Fuhrungsgrosse XG und der Bremsverzogerung b kann das Fahrzeug unter Berucksichtigung des zuruckgelegten Weges s kontinuierlich die Sollgeschwindigkeit in m s berechnen Vsoll 2 b XG s displaystyle V rm soll sqrt 2 cdot b cdot XG s Im Diagramm ist der Wechsel der zulassigen Hochstgeschwindigkeit hier von 300 km h auf 200 km h und das Bremsen bis zum Halt dargestellt Die Bremsparabel wird jeweils so gelegt dass sie durch den einschrankenden Punkt des verlauft und am Haltepunkt endet Fur die Bremsverzogerung b sind bei Linienzugbeeinflussungssystemen die zum Standard ORE A46 kompatibel sind in Deutschland die klassische L72 nicht jedoch L72 CE feste Werte definiert Sollwerte fur die Bremsverzogerung b bei ORE A46 konformen LZBBremskurvennummer BRN A B 1 2 3 4 5 6 7 8 9 10Sollbremsverzogerung 0 08 m s 0 14 m s 0 20 m s 0 26 m s 0 32 m s 0 38 m s 0 44 m s 0 50 m s 0 56 m s 0 63 m s 0 70 m s 0 77 m s Bremsverzogerung der Uberwachungskurve 0 12 m s 0 21 m s 0 30 m s 0 39 m s 0 48 m s 0 57 m s 0 66 m s 0 75 m s 0 84 m s 0 95 m s 1 05 m s 1 16 m s Die an den Zug vorgebende Bremskurvennummer kann von der Zentrale je nach Streckentopographie wahrend der Fahrt gewechselt werden So fallt zum Beispiel eine deutsche L72 Zentrale bei Guterzugen in Bremsstellung G auf die besonders flache Bremskurve B zuruck wenn ein Gefalle von mehr als 6 Promille durchfahren werden soll Die LZB Bremstafel Bremsart R P 12 5 massgebendes Gefalle sieht bei einer Hochstgeschwindigkeit von 200 km h einen Bremsweg zwischen 1600 und 2740 m vor 240 bzw 140 Bremshundertstel BrH Bei 250 km h liegen die Bremswege zwischen 2790 m 240 BrH und 5190 m 140 BrH bei 280 km h zwischen 3760 m und 7470 m Telegrammtypen LZB Variante L72 Aufruftelegramm Das Aufruftelegramm hat eine Lange von 83 Bit in 83 5 Zeitschritten wobei zur Synchronisation das dritte Bit 1 5 Zeitschritte dauert Ein Aufruftelegramm besteht aus Synchronisierung Sync Kopf 1 0 1 0 1 5 5 Zeitschritte Startschritt 0 1 1 3 Zeitschritte Adresse Bereichskennung a e A1 A3 3 Bit und Fahrortnummer 1 127 255 129 8 Bit Sicherheitsinformationen Fahrtrichtung vorwarts ruckwarts 1 Bit Bremskurvenform Parabel 2 Bit und nummer 1 10 A B 4 Bit Bremsinformationen Vormeldeweg 0 1550 m 5 Bit Fuhrungsgrosse XG 0 12 787 m 10 Bit Zielinformation Entfernung 0 12 700 m 7 Bit und Zielgeschwindigkeit 0 300 km h 6 Bit Anzeigeinformationen Signal Nothalt 3 Bit und Zusatzinformation El 1 El 3 5 Bit Hilfsinformationen Typ des angeforderten Ruckmeldetelegramms Ruckmeldung 1 4 2 Bit Teil Ganzblock 1 Bit verdeckte Langsamfahrstelle ja nein 1 Bit Telegrammschlusskennung bin 01 bin 11 2 Bit Reserve 7 Bit Prufsumme CRC 8 Bit ab dem sechsten Bit Generatorpolynom p x8 x7 x2 1 displaystyle p x 8 x 7 x 2 1 Ruckmeldetelegramme Ruckmeldetelegramme vom Fahrzeug zur Zentrale haben eine Lange von 41 Bit und sind mit einer 7 Bit Prufsumme gesichert gebildet ab dem vierten Bit Generatorpolynom p x7 x5 x3 1 displaystyle p x 7 x 5 x 3 1 Im Folgenden werden die Nutzinhalte aufgefuhrt Telegrammtyp 1 Telegrammtyp Fahrortquittung Fahrzeugadressebestatigung Bremscharakteristik Bremsart und Bremsvermogen Feinort innerhalb der 100 m Abschnitte 0 87 5 m in 12 75 m Schritten Geschwindigkeit 0 315 km h in 5 km h Schritten Betriebs und Diagnosemeldungen insgesamt 28 moglich z B Fahrgastnotbremse LZB Halt uberfahren Zwangsbremsung Wartung erforderlich Telegrammtyp 2 Telegrammtyp Fahrortquittung Bremscharakter Bremsart und Bremsvermogen Feinort Maximale Geschwindigkeit des Zuges 0 310 km h Zuglange 0 787 5 m in 12 75 m Schritten Telegrammtyp 3 Telegrammtyp Kennzeichen der Bahnverwaltung Zugnummer Telegrammtyp 4 Telegrammtyp Baureihe Seriennummer ZuglangeTelegrammubertragung Die Ubertragung der Telegramme von der Zentrale Richtung Fahrzeug erfolgt mittels Frequenzmodulation einer Tragerfrequenz von 36 kHz mit einem Frequenzhub von 0 6 kHz Die Ubertragungsgeschwindigkeit betragt dabei 1200 Baud In der umgekehrten Ubertragungsrichtung betragt die Tragerfrequenz 56 kHz der Frequenzhub 0 2 kHz und die Ubertragungsgeschwindigkeit 600 Baud In beiden Richtungen dauern die Telegramme also knapp 70 ms Ein Zyklus aus Aufruftelegramm Verarbeitung und Ruckmeldetelegramm dauert 210 ms Neuere LZB Versionen Bei den LZB Versionen LZB CE1 und LZB CE2 fur CIR ELKE wurden die Telegrammstruktur fur die neuen Funktionen erweitert Linienleiter Schleifenstruktur und Rechner blieben unverandert Schleifenlangen und Software mussten den neuen Aufgaben angepasst werden Ende einer LZB Fuhrung Ruckkehr Ubergang zur Signal PZB Fuhrung Nahert sich ein Triebfahrzeug dem Ende eines mit Linienleiter ausgerusteten Abschnittes so wird dem Triebfahrzeugfuhrer dies im Fuhrerraum signalisiert Nach der Quittierung dieses sogenannten Ende Verfahrens fahrt der Zug wieder signalgefuhrt und der Triebfahrzeugfuhrer muss demzufolge wieder die Signale und die Geschwindigkeiten gemass Buchfahrplan beachten Es gibt jedoch auch Storungsfalle bei denen eine Entlassung aus der LZB wahrend des Befahrens eines mit ihr ausgestatteten Abschnittes unplanmassig passiert Dies ist der Fall bei Storungen an der Fahrzeugausrustung sowie bei sogenannten Ubertragungsausfallen die dann meistens auf kurzzeitige Aussetzer der Funkubertragung zwischen Linienleiter und Fahrzeugantenne oder Storungen an der Infrastruktur zuruckzufuhren sind Die haufigste Storung ist der Ausfall einer Kurzschleife durch mechanische Unterbrechung des Linienleiters Ein Ubertragungsausfall wird dem Triebfahrzeugfuhrer optisch und akustisch gemeldet eine Schleifenstorung dem zustandigen Fahrdienstleiter In diesen Fallen lauft ein Notprogramm in der Fahrzeugeinrichtung ab Bis zu drei nicht erkannte Kreuzungsstellen des Linienleiters werden vom Fahrzeuggerat nachgebildet zumal vor dem Ubertragungsausfall Zielentfernung Zielgeschwindigkeit und momentan zulassige Geschwindigkeit bekannt waren Wird die folgende Kreuzungsstelle wieder erkannt kann der Zug die Fahrt ungestort fortsetzen Wird die Ubertragung nicht wiederhergestellt wird dem Triebfahrzeugfuhrer signalisiert auf eine sogenannte Ausfallgeschwindkeit innerhalb eines sogenannten Ausfallweges abzubremsen Diese Meldung muss vom Triebfahrzeugfuhrer quittiert werden ansonsten erfolgt eine Zwangsbremsung bis zum Stand Die Grosse dieser Ausfallgeschwindkeit und die Lange des Ausfallweges bestimmt die Fahrzeugeinrichtung aufgrund diverser Vorgaben durch die jeweils ortlich gegebene Situation Verkehrt der Zug im Vollblockmodus betragt diese Geschwindigkeit 160 km h Nach deren Erreichung fahrt der Zug signalgefuhrt unter Beachtung des Buchfahrplanes weiter Ein im Teilblockmodus verkehrender Zug muss halten weil die Deckung des vorliegenden Zuges durch die LZB Blockstellen nicht mehr besteht Nach einem Halt wegen einer Storung der LZB erfolgt die Weiterfahrt per schriftlichem Befehl vom Fahrdienstleiter Letzteres gilt grundsatzlich ehe man weiterfahren kann nachdem man unplanmassig aus der LZB entlassen wurde und deswegen bis zum Stillstand abbremsen musste Eine Wiederaufnahme in die LZB Fuhrung kann erst am folgenden Bereichskennungswechsel erfolgen weil nur an dieser Stelle die Position des Zuges eindeutig bekannt ist Bis zu dieser Wiederaufnahme empfangt das Fahrzeuggerat zwar die Aufruftelegramme der Streckenzentrale antwortet jedoch nicht Mit LZB ausgerustete Vollbahn StreckenAnfang 2006 waren europaweit 2920 Streckenkilometer mit LZB ausgerustet oder in Ausrustung Rund 400 Streckenkilometer in Deutschland Osterreich und Spanien waren in Bau In Deutschland waren 34 LZB Zentralen 1580 Streckenkilometer mit LZB L72 in Betrieb weitere 5 Zentralen ca 155 km mit LZB CE I sowie 11 Zentralen 515 km mit LZB CE II In Spanien waren elf L72 Zentralen mit etwa 530 Streckenkilometern in Betrieb in Osterreich drei LZB Zentralen mit ca 140 km Fahrzeugseitig waren bei der Deutschen Bahn etwa 2600 Fahrzeuge mit LZB durch das Konsortium LZB 80 der Firmen Alcatel TSD und Siemens ausgerustet Deutschland DB Auf dem Netz der DB war die LZB in der Anfangszeit des Hochgeschwindigkeitsverkehrs die Grundvoraussetzung fur einen Betrieb mit mehr als 160 km h sofern die Streckenverhaltnisse Zustand von Oberbau Gleisen Oberleitung u a diese Geschwindigkeit zulassen Folgende Ausbau und Bestandsstrecken und Neubaustrecken der Deutschen Bahn sind Stand 2014 mit LZB ausgerustet VzG Nr Bahnstrecke Verlauf und Kilometrierung Streckenzentrale Streckenlange vmax Bemerkungen1700 Hannover Minden Hannover Hbf km 4 4 Wunstorf km 20 4 Stadthagen 16 0 km 2001700 Hannover Minden Haste km 29 2 Buckeburg km 53 4 Stadthagen 24 2 km 2001700 Bielefeld Hamm Brackwede km 114 5 Heessen km 174 3 Rheda Wiedenbruck 59 8 km 2001710 Hannover Celle Hannover Hbf km 3 9 Celle km 40 8 Celle 36 9 km 200 Streckenwechsel mit Kilometersprung in Celle zu 17201720 Lehrte Hamburg Harburg Celle km 43 6 Hamburg Harburg km 166 4 Celle Luneburg 122 8 km 200 Streckenwechsel mit Kilometersprung in Celle zu 17101733 Hannover Wurzburg Hannover Hbf km 4 2 Wurzburg Hbf km 326 6 Orxhausen Gottingen Kassel Wilhelmshohe Kirchheim Hessen Fulda Burgsinn Wurzburg 322 4 km 280 Die Zentrale Orxhausen Abschnitt Hannover Gottingen wurde auf CIR ELKE migriert 1760 Paderborn Soest Paderborn Hbf 125 1 Soest 180 8 Soest 55 7 km 200 Streckenwechsel mit Kilometersprung in Soest zu 29301956 Weddeler Schleife Sulfeld km 18 8 Fallersleben km 24 2 Fallersleben 2 5 4 km 160 Streckenwechsel mit Kilometersprung in Fallersleben zu 61072200 Munster Osnabruck Munster km 68 5 Lengerich km 101 6 Lengerich 33 1 km 2002200 Osnabruck Bremen Bohmte km 139 7 Bremen Gabelung Abzw km 231 1 Bohmte Kirchweyhe 91 4 km 2002200 Bremen Hamburg Sagehorn km 253 9 Buchholz Nordheide km 320 0 Rotenburg Buchholz 66 1 km 2002600 Koln Aachen Koln Hbf km 1 9 Duren km 41 1 Koln Ehrenfeld 39 2 km 250 Die Strecke Koln Duren ist mit der erweiterten Linienzugbeeinflussung CIR ELKE ausgestattet 2650 Koln Duisburg Leverkusen Mitte km 6 7 Dusseldorf Hbf km 37 3 Dusseldorf Hbf 30 6 km 200 Die Zentrale Dusseldorf wurde auf CIR ELKE migriert 2650 Koln Duisburg Dusseldorf Hbf km 40 1 Duisburg Hbf km 62 2 Dusseldorf Hbf 22 1 km 200 Die Zentrale Dusseldorf wurde auf CIR ELKE migriert 2650 Dortmund Hamm Dortmund km 120 4 Nordbogge km 143 3 Kamen 22 9 km 2002690 Koln Frankfurt Main Koln Steinstr Abzw km 6 8 Frankfurt Flugh Fernbf km 172 6 Troisdorf Montabaur 1 2 Weilbach 165 8 km 300 Die Strecke Koln Rhein Main ist mit der erweiterten Linienzugbeeinflussung CIR ELKE ausgestattet 2930 Soest Hamm Soest km 111 5 Hamm Westf km 135 6 Soest 24 1 km 200 Streckenwechsel mit Kilometersprung in Soest zu 17603600 Frankfurt Main Fulda Hanau km 24 7 Hailer Meerholz km 40 4 Gelnhausen 15 7 km 2003656 Kurve Zeppelinheim Frankfurt Flughafen Fernbahnhof km 0 0 Zeppelinheim km 3 9 Weilbach 3 9 km 1603677 Frankfurt Main Fulda Hanau km 24 7 Hailer Meerholz km 40 4 Gelnhausen 15 7 km 200ehemals 4010 Mannheim Frankfurt Main Mannheim Waldhof km 5 4 Zeppelinheim km 69 4 Biblis 64 0 km 200 LZB wurde im Zuge der Generalsanierung im 2 Halbjahr 2024 zuruckgebaut und durch ETCS Level 2 ersetzt4020 Mannheim Karlsruhe Waghausel Saalbach Abzw km 31 7 Karlsruhe Hbf km 59 7 Hockenheim 2 28 0 km 200 Ab Waghausel Saalbach in Richtung Mannheim weiter uber Strecke 40804080 Mannheim Stuttgart Mannheim Hbf km 2 1 Stuttgart Zuffenhausen km 99 5 Hockenheim 1 Vaihingen Enz 97 6 km 2804280 Karlsruhe Basel CH Baden Baden km 102 2 Offenburg km 145 5 Achern Offenburg 43 3 km 250 Die Strecke Baden Baden Offenburg ist mit der erweiterten Linienzugbeeinflussung CIR ELKE ausgestattet 4000 Karlsruhe Basel CH Offenburg km 145 5 Basel Bad Bf km 269 8 Offenburg Kenzingen Leutersberg Buggingen Weil am Rhein 124 3 km 160 Die Strecke Offenburg Basel ist mit der erweiterten Linienzugbeeinflussung CIR ELKE ausgestattet Gefahren wird auf diesem Abschnitt maximal 160 km h 4280 Karlsruhe Basel CH Katzenbergtunnel km 245 4 bis 254 8 km Weil am Rhein 9 4 km 250 Der Katzenbergtunnel ist mit der erweiterten Linienzugbeeinflussung CIR ELKE ausgestattet 4312 Guterumgehungsbahn Freiburg Abzw Gundelfingen km 0 0 Freiburg Gbf km 2 7 Leutersberg 2 7 km 100 CIR ELKE4312 Guterumgehungsbahn Freiburg Freiburg Sud km 8 4 Abzw Leutersberg km 11 1 Leutersberg 2 7 km 100 CIR ELKE5216 Nantenbacher Kurve Abzw Nantenbach km 0 0 Rohrbach km 10 7 Wurzburg 10 7 km 200 Die LZB Zentrale Wurzburg wurde 2018 auf CIR ELKE hochgerustet 5300 Augsburg Donauworth Gersthofen km 5 1 Donauworth km 39 7 Augsburg Hbf 34 6 km 200 Die LZB Zentrale Augsburg wurde 2018 auf CIR ELKE hochgerustet 5302 Augsburg Ulm Diedorf Schwab km 8 6 Dinkelscherben km 27 8 Dinkelscherben 19 2 km 200 Die LZB Zentrale Dinkelscherben ist mit der erweiterten Linienzugbeeinflussung CIR ELKE ausgestattet 5501 Munchen Treuchtlingen Munchen Obermenzing Abzw km 6 9 Petershausen km 38 7 Petershausen 31 8 km 200 Bis 2014 sollte ein weiterer Abschnitt Kilometer 38 400 bis 62 100 mit LZB ausgerustet werden Stand 2009 2025 schrieb die DB eine Verlangerung der LZB Ausrustung von km 38 9 bis 59 5 aus5503 Munchen Augsburg Olching km 14 2 Augsburg Bft Haunstetter Strasse km 60 2 Mering 46 0 km 230 Die LZB Zentrale Mering ist mit der erweiterten Linienzugbeeinflussung CIR ELKE ausgestattet 5505 Munchen Donnersbergerbrucke Abzw Heimeranplatz Munchen Donnersbergerbrucke km 1 0 Abzw Heimeranplatz km 2 9 Munchen Donnersbergerbrucke 1 9 km 90 Streckenwechsel in Munchen Donnersbergerbrucke zu 5540 Die S Bahn Stammstrecke Munchen ist mit der erweiterten Linienzugbeeinflussung CIR ELKE ausgestattet 5540 Stammstrecke S Bahn Munchen Munchen Pasing km 6 3 Munchen Hbf tief km 0 0 Munchen Donnersbergerbrucke 6 3 km 120 Streckenwechsel in Munchen Hbf zu 5550 Die S Bahn Stammstrecke Munchen ist mit der erweiterten Linienzugbeeinflussung CIR ELKE ausgestattet 5550 Stammstrecke S Bahn Munchen Munchen Hbf tief km 0 0 Munchen Ost Pbf km 3 7 Munchen Donnersbergerbrucke 3 7 km 80 Streckenwechsel in Munchen Hbf zu 5540 Die S Bahn Stammstrecke Munchen ist mit der erweiterten Linienzugbeeinflussung CIR ELKE ausgestattet 5850 Regensburg Nurnberg Nurnberg Hbf km 98 0 Nurnberg Reichswald Abzw km 91 1 Fischbach 6 9 km 160 Streckenwechsel mit Kilometersprung in N Reichswald zu 59345910 Furth Wurzburg Neustadt Aisch km 34 8 Iphofen km 62 7 Neustadt Aisch 27 9 km 200 Die Streckenzentrale wurde im Juni 2020 auf CIR ELKE migriert5934 Nurnberg Ingolstadt Nurnberg Reichswald Abzw km 9 4 Ingolstadt km 88 7 Fischbach Kinding 79 3 km 300 Streckenwechsel mit Kilometersprung in N Reichswald von 58506100 Berlin Hamburg Berlin Albrechtshof km 16 5 Hamburg Allermohe km 273 1 Nauen Glowen Wittenberge Hagenow Land Rothenburgsort 256 6 km 230 Die Strecke Berlin Hamburg ist mit der erweiterten Linienzugbeeinflussung CIR ELKE ausgestattet 6105 Priort Nauen Priort km 78 3 Wustermark km 79 6 Ruhleben 1 3 km 80 Hochgerustet auf CIR ELKE in Wustermark Ubergang zur Strecke 61856107 Lehrter Bahn Wustermark Rbf km 27 7 Wustermark Awn km 31 3 Ruhleben 3 6 km 160 Hochgerustet auf CIR ELKE6107 Bindfelde Stendal Abzw Bindfelde km 99 9 Stendal km 101 7 Rathenow 1 8 km 160 Streckenwechsel zu 6427 64286107 Oebisfelde Hannover Oebisfelde km 168 9 Lehrte km 238 5 Fallersleben 1 2 3 69 6 km 200 Streckenwechsel in Oebisfelde zu 61856132 Berlin Bitterfeld Berlin Lichterfelde Ost km 10 6 Bitterfeld km 132 1 Ludwigsfelde Juterbog Wittenberg Bitterfeld 121 5 km 200 Streckenwechsel mit Kilometersprung in Bitterfeld auf 64116185 Berlin Oebisfelde Berlin Spandau km 111 0 Oebisfelde km 269 4 Ruhleben Rathenow Fallersleben 1 158 4 km 250 Streckenwechsel in Oebisfelde zu 61076363 Leipzig Dresden Leipzig Sellerhausen km 3 5 Riesa km 59 4 Wurzen 55 9 km 200 zurzeit ausser Betrieb6399 Oebisfelde Fallersleben Vorsfelde km 7 3 Sulfeld km 20 0 Fallersleben 2 12 7 km 1606401 Bahnhof Wittenberge Wittenberge km 53 3 Streckenende km 54 4 Wittenberge 1 1 km 80 Streckenwechsel zu 61006411 Bitterfeld Leipzig Bitterfeld km 49 0 Leipzig Messe km 72 3 Bitterfeld 23 3 km 200 Streckenwechsel mit Kilometersprung in Bitterfeld auf 61326427 Staffelde Bindfelde Abzw Staffelde km 0 0 Abzw Bindfelde km 1 2 Rathenow 1 2 km 130 Streckenwechsel zu 61856428 Staffelde Bindfelde Abzw Staffelde km 0 0 Abzw Bindfelde km 2 4 Rathenow 2 4 km 130 Streckenwechsel zu 61856441 Bahnhof Ludwigslust Ludwigslust km 29 9 km 32 0 2 1 km 120 Streckenwechsel zu 6100 Im Zuge der Zweiten Stammstrecke Munchen soll die Linienzugbeeinflussung im Bahnhof Munchen Pasing und auf S Bahn Strecken westlich davon eingebaut werden Der Baubeginn ist fur 2024 geplant die Inbetriebnahme soll spatestens zusammen mit der Zweiten Stammstrecke erfolgen S Bahn Munchen DB Um eine Zugfolge von 90 Sekunden einschliesslich eines Puffers von 18 Sekunden zu erreichen war die Stammstrecke der S Bahn Munchen bei ihrer Inbetriebnahme im Jahr 1972 mit LZB ausgerustet Dabei war bis Ende der 1960er Jahre noch geplant im Bremswegabstand unter Nutzung der selbsttatigen Zugschlussuberwachung der Fahrzeuge zu fahren In einer Steuerzentrale sollte ein Rechner fur jeden Zug anhand der Streckenbelegung die jeweils gunstigste Fahrgeschwindigkeit errechnen und uber den Linienleiter an das Fuhrerstandsanzeigegerat ubertragen um die wirtschaftlichste Fahrweise zu erreichen Ebenfalls sollte uber die LZB der Leistungsbedarf geglattet werden indem nicht viele Zuge gleichzeitig anfahren Fur die S Bahn Munchen wurde die auf der Bahnstrecke Munchen Augsburg verwendete LZB Technik geringfugig modifiziert ubernommen In einer zweiten Stufe sollte die LZB auf das gesamte S Bahn Netz ausgedehnt und fur den Endausbau war ein vollautomatischer Betrieb mit selbsttatigen Zugfahrten und selbsttatiger Steuerung des Betriebs vorgesehen Diese LZB war technisch fur eine Mindestzugfolgezeit von 90 Sekunden 40 Zuge pro Stunde und Richtung inklusive einer Toleranz von 20 ausgelegt und wurde in den 1970er Jahren mehrmals verandert Mit der 1972 eingebauten LZB wurde nur im Versuchsbetrieb gefahren Als Mindestabstand zwischen dem Zugschluss des vorausfahrenden S Bahnzugs und der Zugspitze des nachfolgenden S Bahn Zugs waren mindestens 12 5 Meter Toleranz des Zugschlusses 25 0 Meter Durchrutschweg 37 5 Meter Schutzabstand insgesamt 75 0 Meter vorgesehen Die Linienleiterschleifen waren etwa alle 100 Meter zur Kalibrierung der Wegmessung gekreuzt im Stationsbereich ofter mit je einer LZB Kreuzungsstelle 6 25 Meter vor dem betrieblichen Sollhaltepunkt Ferner erfolgte alle 12 5 Meter nochmals eine Feinortung am Rad Jede Steuerstelle konnte hochstens neun Zuge mit einer maximalen Ubertragungsweite von 12 7 Kilometer ansteuern Die Signalisierung sollte per Fuhrerstandssignalisierung erfolgen deren Zielpunkte sehr dicht gewahlt und die Soll Geschwindigkeit in 100 Meter Schritten abgebildet werden konnten Die Gleisfreimeldung war mittels automatischer Zugschlusskontrolle und der Feinortung alle 12 5 Meter per Ubertragung der Abschnittsnummer an das LZB Streckengerat vorgesehen somit war eine Minimierung der Zugfolge nur unmittelbar zwischen zwei mit dieser LZB ausgerusteten Zugen moglich In den 1970er Jahren wurde die LZB von 1972 aufgrund der Nichtanwendbarkeit auf Nicht LZB Zuge dahingehend modifiziert dass jeder 210 Meter lange Bahnsteigabschnitt in zwei Gleisfreimeldeabschnitte unterteilt wurde um ein Nachrucken eines Folgezuges nach Raumung des halben Bahnsteigbereichs zu ermoglichen mit einer hoheren Mindestzugfolgezeit als zuvor Auch diese Modifizierung ging nicht in den Regelbetrieb Ende der 1970er Jahre wurde die 1972 eingebaute und spater modifizierte LZB schliesslich ahnlich zur damaligen Fernbahn LZB an das seit 1972 genutzte H V Signalsystem angepasst das ursprunglich nur als Reservesignalsystem gedacht war Im Regelbetrieb fuhren nur ein Teil der S Bahn Zuge mit LZB bis diese 1983 abgebaut wurde Aufgrund geringer Verfugbarkeit des hohen Instandhaltungsaufwands und des Mangels betrieblichen Nutzens wurde dieses System 1983 ausser Betrieb genommen und abgebaut Durch Optimierungen am H V Signalsystem konnte auch ohne LZB Einsatz ein Durchsatz von 24 Zugen pro Stunde erreicht werden Die LZB ging im Dezember 2004 auf Grundlage neuer Technik wieder in Betrieb um den Durchsatz von 24 auf 30 Zuge pro Stunde und Richtung zu steigern die technische Leistungsfahigkeit liegt bei 37 5 Zugen pro Stunde und Richtung Seit 2018 werden weitere Triebzuge der Baureihe 420 mit LZB ausgerustet Osterreich OBB Hauptartikel Osterreichische Bundesbahnen Ab 1991 wurde die Westbahn zunachst zwischen den Hauptbahnhofen Linz und Wels mit LZB ausgerustet Bis 2030 sollen alle mit LZB ausgerusteten Streckenabschnitte auf das europaisch einheitliche Zugbeeinflussungssystem European Train Control System umgerustet werden 2022 wurde der Streckenabschnitt Linz Hauptbahnhof Attnang Puchheim km 190 5 km 240 4 wegen Veralterung der im Stellwerk Wels verwendeten LZB Version ruckgebaut Aktuell in Betrieb befindliche mit LZB ausgerustete Streckenabschnitte St Polten Hbf Linz Kleinmunchen km 63 5 km 183 3 Schweiz SBB In den 1970er Jahren wurden im Netz der Schweizerischen Bundesbahnen SBB die beiden Strecken Lavorgo Bodio und Turgi Koblenz versuchsweise mit Linienzugbeeinflussung ausgerustet Die eingesetzte LZB Variante wurde als UIC LZB bezeichnet Die Versuche wurden 1981 abgeschlossen und der Entscheid gefallt das System nicht weiter zu verfolgen Es wurde geurteilt dass das System zwar die Funktion erfulle aber zu kostspielig sei so dass es nur dort notwendig wurde wo das herkommliche Signalsystem aufgrund der hohen Geschwindigkeiten nicht ausreichen wurde Es wurde darauf gesetzt dass bis zum Bau der Neuen Haupttransversale NHT ein rechnergestutztes Zugsicherungssystem mit Kommunikation uber Funk zur Verfugung stehen wurde was bei der Neubaustrecke Mattstetten Rothrist mit der Anwendung von ETCS Level 2 tatsachlich der Fall war In anderen Quellen wurde als Hauptziel der LZB Versuche anstelle der Erhohung der Fahrgeschwindigkeit die hohere Sicherheit des Eisenbahnbetriebes und die Verkurzung der Zugfolgezeiten genannt Ende 1971 hatten die SBB der Standard Telephon amp Radio AG STR den Auftrag erteilt die Gotthard Sudrampe zwischen Lavorgo Standort der Streckenzentrale und Bodio mit dem LZB System L72 der SEL auszurusten Gleichzeitig erhielt die Brown Boveri AG den Auftrag ein Fahrzeuggerat fur die sechs Re 4 4II 11299 bis 11304 zu entwickeln die 1973 abgeliefert wurden Auch Regionalverkehrszuge RABDe 8 16 wurden ausgerustet Im September 1974 wurde das System erstmals getestet Im Fruhjahr 1975 begann der Versuchsbetrieb Am 1 Juli 1976 wurden die ortsfesten Anlagen durch die SBB ubernommen Taglich verkehrten rund 15 Zuge unter LZB Fuhrung uber die Strecke Dieses System berucksichtigte in der Bremswegberechnung bereits die Neigungsverhaltnisse der Strecke und besass vier als virtuelle Blockstrecken bezeichnete Teilblocke Wahrend das System weitgehend mit dem auf der Bahnstrecke Bremen Hamburg eingesetzten System ubereinstimmte entschieden sich die SBB fur ein anderes Verlegesystem das der UIC Norm A3 statt B3 entsprach Malaysia KLIA Ekspres ZSL 90 auf dem KLIA Ekspres in Kuala Lumpur In Malaysia nutzt der regelspurige 56 km lange Flughafen Express KLIA Ekspres das Linienleitersystem ZSL 90 fur Geschwindigkeiten von bis zu 160 km h Spanien ADIF Hauptartikel Administrador de Infraestructuras Ferroviarias Madrid Cordoba Sevilla zwolf Zentralen 480 km Die Strecke ist seit April 1992 in Betrieb Die LZB soll 2025 durch ETCS Level 2 ersetzt werden Seit Marz 2004 ist auch der Endbahnhof Madrid Atocha mit LZB ausgerustet Im November 2005 wurde ein Abzweig nach Toledo in Betrieb genommen 20 km Seit 16 Dezember 2006 ist das Teilstuck Cordoba Antequera in Betrieb zwei Zentralen 102 km Dieses Teilstuck gehort zur Strecke Cordoba Malaga drei Zentralen 154 km Die dritte Zentrale ging Ende 2007 in Betrieb S Bahn Madrid Linie C5 von Humanes uber Atocha nach Mostoles zwei Zentralen 45 km und 76 Triebzuge der Reihe 446 Der Betrieb erfolgt im ATO Modus die Zuge werden von der LZB uber die automatische Fahr und Bremssteuerung AFB gesteuert und halten automatisch mit einer Toleranz von 20 cm an den Bahnsteigen Spanien Euskal Trenbide Sarea Dieser Artikel oder nachfolgende Abschnitt ist nicht hinreichend mit Belegen beispielsweise Einzelnachweisen ausgestattet Angaben ohne ausreichenden Beleg konnten demnachst entfernt werden Bitte hilf Wikipedia indem du die Angaben recherchierst und gute Belege einfugst Hauptartikel Euskal Trenbide Sarea Die spanischen Schmalspurbahnen benutzen ein fur deutsche Industriebahnen entwickeltes verwandtes System Bilbao Atxuri Durango Zarautz Donostia San Sebastian Hendaye Bilbao Deustu LezamaLinienformige Zugbeeinflussung bei U Bahnen und StadtbahnenLZB Technik wird nicht nur bei Eisenbahnen eingesetzt sondern auch bei U und Stadtbahnen Aufgrund der unterschiedlichen Anforderungen unterscheidet sich die verwendete Technik aber teilweise erheblich von den Vollbahnsystemen Insbesondere bei den Kurzschleifensystemen LZB 500 und LZB 700 von Siemens lassen sich die unter Funktionsweise genannten Prinzipien nicht anwenden Hamburger Hochbahn Die Hamburger Hochbahn HHA erprobte auf Streckenabschnitten der U1 als erstes Unternehmen im Deutschland den automatisierten Fahrbetrieb Ziel waren Kosteneinsparungen und eine Verbesserung der Qualitat Nach der Ausrustung der Strecke Ritterstrasse Trabrennbahn mit Linienleiter mit 30 m langen Schleifen fanden ab 1967 mit den zwei DT2 Einheiten 9388 9389 AEG Ausrustung und 9426 27 Siemens Ausrustung sowie kurze Zeit spater auch mit dem DT3 Prototyp 9600 01 02 je ein Fuhrerstand mit AEG und einer mit Siemens Ausrustung Erprobungen statt In den 1970er Jahren erfolgten auf dem dritten Gleis zwischen den Stationen Farmsen und Berne weitere Versuche Projekt PUSH Prozessrechnergesteuertes U Bahn Automatisierungs System Hamburg Schliesslich fuhren vom 31 Oktober 1982 bis zum 8 Januar 1985 auf der zehn Kilometer langen Strecke zwischen den Stationen Volksdorf und Grosshansdorf sechs auf LZB Betrieb umgebaute DT3 Einheiten im regularen Fahrgastbetrieb Danach wurde der automatisierte Betrieb wieder eingestellt Die Hochbahn plant keine Wiedereinfuhrung Die seit Anfang der 1970er Jahre auf dem gesamten Netz verlegten Linienleiter werden zur Zugtelefonie verwendet Berliner U Bahn Die ersten Versuche mit Linienzugbeeinflussung auf der Berliner U Bahn erfolgten bereits 1928 im Bahnhofsbereich Krumme Lanke bzw 1958 1959 mit Tonfrequenz Wechselstromschleifen Auf der Berliner U Bahn Linie U9 fuhr von 1976 bis 1993 ein Teil der Zuge nach LZB Entsprechende Versuchsfahrten wurden ab 1965 erfolgreich absolviert beginnend mit dem kurzen Abschnitt zwischen der Kehranlage Zoologischer Garten und dem U Bahnhof Spichernstrasse Ferner wurden bis 1998 weitere Versuche des fahrerlosen Kehrens zum automatischen Fahrtrichtungswechsel der U Bahn Zuge hinter den Endstationen durchgefuhrt Auf der U9 kam das Kurzschleifensystem LZB 500 in Berlin als LZB 501 bezeichnet mit standardmassig 64 m langen LZB Schleifen zum Einsatz Die Ausserbetriebnahme der LZB erfolgte aus wirtschaftlichen Grunden da die vorhandenen Signal und Zugbeeinflussungssysteme zur Sicherstellung der dort erforderlichen Zugfolgezeiten als ausreichend erachtet wurden Weitere Versuche mit kontinuierlichen Zugbeeinflussungssystemen und automatischem Fahren fanden auf den Linien U2 SelTrac U4 SelTrac und U5 STAR statt wobei STAR zur Datenubertragung die Funktechnik Funkzugbeeinflussung statt der Linienleiterschleifen nutzte Stadtbahn Dusseldorf Duisburg Krefeld Meerbusch Mulheim an der Ruhr Die Tunnelstrecken auf den Stadtbahnen in Duisburg und zum Teil in Mulheim an der Ruhr sind mit dem Zugbeeinflussungssystem LZB L90 von Alcatel bzw SEL ausgerustet Es wird ein automatischer Fahrbetrieb mit Fahrer durchgefuhrt der Fahrer betatigt hierbei zur Abfahrt eine Starttaste und uberwacht wahrend der Fahrt Fahrzeug und Strecke ohne im Regelbetrieb in die Fahrzeugsteuerung einzugreifen Dasselbe Zugbeeinflussungssystem wurde auf der Oberflachenstrecke von Dusseldorf uber Meerbusch nach Krefeld zwischen den Haltestellen Dusseldorf Lorick und Krefeld Grundend eingebaut und war ebenfalls auf der ersten und zweiten Stammstrecke der Stadtbahn Dusseldorf in Betrieb Im Rahmen der Umstellung auf eine Punktformige Zugbeeinflussung wurde die LZB in Dusseldorf nach und nach ausser Betrieb genommen Auf der Strecke nach Krefeld wurde das System am 12 Marz 2023 abgeschaltet Die letzten LZB Streckenabschnitte wurden am 17 Januar 2025 abgeschaltet womit nun das gesamte Zugsicherungsnetz der Stadtbahn Dusseldorf auf eine Punktformige Zugbeeinflussung umgerustet worden ist Auch in Duisburg und Mulheim an der Ruhr lauft die Punktformige Zugbeeinflussung bereits seit 2022 im Parallelbetrieb mit der LZB und diese geht voraussichtlich Ende 2025 ausser Betrieb sobald die letzten GT10NC DU ausgemustert werden U Bahn Wien Auch in Wien ist mit Ausnahme der Linie U6 das gesamte U Bahn Netz seit seiner Inbetriebnahme mit einer linienformigen Zugbeeinflussung dem Kurzschleifensystem LZB 500 von Siemens LZB 503 513 ausgerustet und bietet die Moglichkeit des automatischen Fahrens bei der der Fahrer eine Uberwachungsfunktion ausubt Auf eine Ruckfallebene mit konventionellen Lichtsignalen wurde in Wien verzichtet Bei der Wiener U Bahn werden Kurzschleifen mit einer Lange von 74 m eingesetzt Die Linienleiterschleifen verlaufen bei der U Bahn Wien nicht wie sonst ublich in Gleismitte und im Schienenfuss sondern zweimal im Gleis ausserhalb des Stopfbereiches Dafur wurden besondere Betonschwellen mit eingearbeiteten Linienleiteraufnahmen entwickelt An beiden Endstationen der Wiener U4 in Heiligenstadt seit 2000 in Hutteldorf seit 1990 werden alle Zuge automatisch gewendet indem der Fahrer am Ankunftsbahnsteig aussteigt per Schlusselschalter die Automatikfahrten nacheinander anfordert am Beginn des Abfahrtsbahnsteigs den Zug wieder ubernimmt und entlang des Bahnsteigs zum entsprechenden Haltepunkt vorfahrt Letzteres ist notig weil im Gegensatz zu den Nurnberger U Bahn Linien U2 und U3 eine selbsttatige Gleisraumuberwachung im Bahnsteigbereich fehlt Aufgrund zufriedenstellender Ergebnisse wurde auch die Station Aspernstrasse der U2 mit einer automatischen Wendeanlage ausgerustet U Bahn Munchen Das Netz der Munchner U Bahn ist ebenso wie das in Wien bereits seit seiner Inbetriebnahme mit dem Kurzschleifensystem LZB 500 LZB 502 512 ausgestattet Es wurde um 2005 durch das Fahrzeuggerat M21 ersetzt Im Regelbetrieb wird tagsuber nach LZB gefahren Abends ab 23 Uhr bis Betriebsschluss wird von Hand und unter Beachtung der ortsfesten Signale gefahren damit die Fahrer im Handfahrbetrieb sog Fahren nach ortsfesten Signalen FO geubt bleiben Fruher wurde von 21 Uhr sowie sonntags von Hand gefahren Es ist dabei vorgeschrieben dass jeder Fahrer eine bestimmte monatliche Anzahl an Fahrstunden nach ortsfesten Signalen erreichen muss Beim Fahren nach LZB bedient der Fahrer nach dem Aufstarten bzw nach jeder Zugabfertigung gleichzeitig zwei Starttasten Anschliessend uberwacht der Fahrer den Gleisraum bedient die Turen ubernimmt die Zugabfertigung und steht fur den Storungsfall bereit Dabei kann der Fahrer sowohl manuell anhand der im Fuhrerstand angezeigten Maximalgeschwindigkeit als auch mit Automatischer Fahr Bremssteuerung AFB fahren ortsfeste Signale sind in beiden LZB Fahrweisen dunkelgeschaltet Die zugnummernabhangige Umschaltung zwischen Fahren nach ortsfesten Signalen FO und Fahren nach LZB erfolgt stellwerksseitig das heisst inzwischen per Fernsteuerung von der U Bahn Betriebsleitzentrale aus Bei Storungen der Zugsicherung wird manuell auf Ersatzsignal gefahren Die Munchner U Bahn ist standardmassig mit 78 m langen LZB Schleifen ausgestattet die im Gefalle der Regelfahrtrichtung entsprechend verlangert werden Dadurch wird zumindest in Regelfahrtrichtung der LZB Standardbremsweg uber stets drei LZB Schleifen gewahrleistet eine weitere LZB Schleife dient der sicheren Abstandshaltung Dabei kann ein nachfolgender Zug auf bis zu 80 Meter auf einen an einem Bahnsteig stehenden oder aus dem Bahnsteig ausfahrenden Zug aufrucken In der LZB konnen zusatzliche Haltepositionen festgelegt werden Im Bereich der Bahnhofe werden aufgrund der Bahnsteiglange von 120 m die LZB Schleifen so angeordnet dass am jeweiligen Ausfahrsignal ein Durchrutschweg von 96 m in der Ebene resultiert Derzeit ist eine Automatisierung des Abstellens und Wendens von Leerzugen in Wendeanlagen mit Hilfe der LZB als Vorstufe zum vollautomatischen Betrieb in Planung U Bahn Nurnberg Bei der U Bahn Nurnberg wird mit der Inbetriebnahme der Linie U3 ein vollautomatischer Betrieb ohne Fahrer realisiert Die Zuge der Baureihe DT3 fahren dabei auf Strecken die mit linienformiger Zugbeeinflussung ausgestattet sind und besitzen keinen abgetrennten Fuhrerstand mehr sondern nur noch einen Notfahrstand Das System wurde von Siemens und der Betreiberin VAG Verkehrs Aktiengesellschaft Nurnberg gemeinsam entwickelt und sollte weltweit das erste sein bei dem fahrerlose Zuge und konventionelle Zuge auf einem gemeinsamen Streckenabschnitt der von der bestehenden Linie U2 und der neuen U3 genutzt wird im Regelbetrieb verkehren Anfangs fuhr in jedem Zug ein Kundenbetreuer mit inzwischen verkehren die meisten Zuge unbegleitet Nach mehrjahrigen Verzogerungen wurde der abschliessende dreimonatige Testbetrieb ohne Fahrgaste am 20 April 2008 erfolgreich abgeschlossen die endgultige Betriebsgenehmigung der technischen Aufsichtsbehorde wurde am 30 April 2008 erteilt In einem wenige Tage danach begonnenen stufenweisen Vorlaufbetrieb mit Fahrgasten wurde zunachst an Sonn und Feiertagen dann auch wochentags zu Schwachlastzeiten und schliesslich taglich nach dem morgendlichen Berufsverkehr in dem ein Vorlaufbetrieb aufgrund der zu dichten Zugfolge der U2 vor der Fahrplanumstellung nicht moglich war gefahren Die offizielle Eroffnung der U3 erfolgte am 14 Juni 2008 in Anwesenheit des bayrischen Ministerprasidenten und des Bundesverkehrsministers der Regelbetrieb begann mit der Fahrplanumstellung am 15 Juni 2008 Am 2 Januar 2010 wurde die Linie U2 ebenfalls auf automatischen Betrieb umgestellt Verwendet wird hier die am weitest entwickelte Version des Kurzschleifensystems LZB 500 von Siemens die LZB 524 mit einer Schleifenlange von standardmassig 90 m Als Besonderheit erfolgt auf den reinen U3 Strecken wo keine fahrergefuhrten Zuge verkehren auch die Gleisfreimeldung uber die LZB die ortsfeste streckenseitige Gleisfreimeldung ist nur noch rudimentar als Ruckfallebene vorhanden Ausserdem werden uber die Linienzugbeeinflussung auch nicht sicherheitsrelevante Informationen des fahrerlosen Betriebs wie Auftrage zum Fahrtrichtungswechsel das Zugziel und Fahrauftrage ubermittelt Stadtbahn London DLR Die Docklands Light Railway im Osten Londons fahrt seit ihrer Inbetriebnahme automatisch mit Zugen ohne Fuhrerstand Die Zuge werden dabei von einem als Train Chief bezeichneten Mitarbeiter begleitet der fur das Schliessen der Turen und das Erteilen des Abfahrbefehls zustandig ist sich wahrend der Fahrt aber hauptsachlich der Kundenbetreuung und Fahrscheinkontrolle widmet Im Storungsfall konnen die Zuge durch den Train Chief von einem Notfuhrerstand von Hand gefahren werden Die eingesetzte linienformige Zugbeeinflussung ist das von Alcatel hergestellte und aus der fur die Deutsche Bundesbahn entwickelten LZB von Standard Elektrik Lorenz SEL weiterentwickelte System SelTrac Europaweit genormtes NachfolgesystemEurobalisen fur ETCS in Wittenberg Auf der Bahnstrecke Berlin Halle fand um 2006 probeweise ein Parallelbetrieb von LZB und ETCS statt 2013 war geplant die LZB im Netz der DB zwischen 2025 und 2030 sukzessive durch ETCS Level 2 zu ersetzen Die streckenseitige Ausrustung mit LZB L72 wurde vom Hersteller Thales fur 2012 abgekundigt Bestehende Strecken wurden bis 2023 auf LZB L72 CE CIR ELKE umgestellt als letzte am 14 November 2023 die Zentrale in Gelnhausen Etwa 75 der LZB Strecken sollten eine Doppelausrustung mit ETCS Level 2 erhalten Fast alle LZB Strecken sollten bis mindestens 2026 mit fahrzeugseitiger LZB nutzbar bleiben Anschliessend sollte die Streckenausrustung der LZB schrittweise ausser Betrieb genommen werden wobei die letzten LZB Strecken 2030 ausser Betrieb gehen sollten da auch der Hersteller die Systempflege fur LZB L72 CE nur bis maximal 2030 zusicherte Im Rahmen der Konzentration des ETCS Rollouts auf den Korridor A Rotterdam Genua war die erste Doppelausrustung LZB ETCS fur den Korridor Basel Offenburg vorgesehen Das bisherige Pilotprojekt hat ergeben dass ETCS Level 2 alle betrieblichen Anforderungen des Systems LZB einschliesslich der Hochleistungsblockfunktion ubernehmen kann Im Zuge der Umstellung von LZB auf ETCS werden voraussichtlich eine Reihe von bestehenden Stellwerken durch neue Elektronische oder Digitale Stellwerke ersetzt werden mussen Die LZB ist ein hauptsachlich auf deutsche Verhaltnisse und Erfordernisse zugeschnittenes System Im Zuge der Vereinheitlichung und Normung der europaischen Bahnsysteme wurde als einheitliches Zugbeeinflungssystem innerhalb der Europaischen Union ETCS vorgeschrieben diese Entwicklung wird auch von der Schweiz als Binnenland innerhalb der EU mitgetragen ETCS wird inzwischen an verschiedenen Strecken erprobt Die LZB wird innerhalb von ETCS als Klasse B System gefuhrt fur das ein genormtes Anpassungsmodul Specific Transmission Module STM existiert das den Betrieb von dafur ausgerusteten ETCS Fahrzeugen auf LZB Strecken erlaubt Ebenso ist die parallele Ausrustung von Strecken mit ETCS und LZB moglich und zugelassen wobei jedoch laut Norm ETCS die sicherungstechnische Fuhrungsrolle ubernehmen muss Bei einer Parallelausrustung besteht die Moglichkeit den ETCS Einstieg Anfangsbalisen in Fahrtrichtung vor die LZB Voreinstellschleife zu legen Liegen die Anfangsbalisen hingegen in Fahrtrichtung hinter dem LZB Beginn wird die LZB Datenubertragung bei Aufnahme in ETCS abgebrochen Zur Vermeidung von Fehlermeldungen ist dabei eine CIR ELKE LZB Zentrale mit speziellen Anpassungen erforderlich Zum Ubergang von ETCS auf LZB wird das ETCS Fahrzeuggerat per Ankundigungsbalise zum Systemwechsel aufgefordert fur den Ubergang von der LZB zu ETCS kommen Ankundigungs oder Transitionsbalisen zum Einsatz Neben dieser automatischen Transition ist auch ein manueller vom Triebfahrzeugfuhrer ausgeloster Ubergang zwischen den Zugbeeinflussungssystemen moglich Wahrend ein direkter Ubergang von LZB zu ETCS Level 2 moglich ist ist fur den Ubergang von ETCS Level 2 zu LZB ein Zwischenabschnitt mit PZB erforderlich In Spanien wurden um 2006 64 Triebzuge der Baureihen 102 und 103 mit ETCS Fahrzeuggeraten ausgerustet in die die LZB als zusatzliches nationales Zugbeeinflussungssystem STM integriert ist LiteraturHermann Lagershausen Die geschichtliche Entwicklung des Linienleiters In Eisenbahntechnische Rundschau Band 22 Nr 11 1973 S 423 434 DB Netz AG Schienennetz Nutzungsbedingungen Auszug aus der Richtlinie 483 Zugbeeinflussungsanlagen bedienen Modul 483 0201 PDF 174 kB Linienformige Zugbeeinflussungsanlagen bedienen Allgemeiner Teil Modul 483 0202 PDF 679 kB Linienformige Zugbeeinflussungsanlagen bedienen LZB 80 FahrzeugeinrichtungenWeblinksCommons Linienzugbeeinflussung Sammlung von Bildern Videos und Audiodateien Beschreibung der LZB Fotos des MFA Karte der mit Linienzugbeeinflussung ausgerusteten Strecken unvollstandig auf der OpenRailwayMapEinzelnachweiseDB Netz Hrsg European Train Control System ETCS bei der DB Netz AG Frankfurt am Main April 2014 S 11 12 PDF Datei PDF Datei Memento vom 14 Juni 2015 im Internet Archive Infrastrukturzustands und entwicklungsbericht 2021 PDF Leistungs und Finanzierungsvereinbarung In eba bund de Deutsche Bahn Mai 2022 S 167 abgerufen am 5 Mai 2022 Alfred Braun Aufstellen von Bremstafeln fur Strecken mit Linienzugbeeinflussung In ZEVrail Glasers Annalen Band 112 Nr 4 April 1988 ISSN 1618 8330 ZDB ID 2072587 5 S 108 118 Dieter Jaenichen Norbert Rudolph Thomas Weiss LZB Bremstafeln fur Neigungen bis 40 Dresden 2001 S 7 42 47 f Alfred Braun Die LZB Bremstafeln fur Guterzuge In Eisenbahn Ingenieur Kalender Band 4 1991 ISBN 3 87814 500 4 S 275 282 Andreas Singer Entwicklung und Erprobung von Bremskurven fur den Hochgeschwindigkeitsverkehr mit Funkzugbeeinflussung FZB In Tagungsband 3 Schienenfahrzeugtagung Dresden Rad Schiene Band 3 Tetzlaff Verlag Dresden 1999 H Arndt Das Punkt und Liniensystem der selbststandigen Zugbeeinflussung In Siemens Zeitschrift Hefte 9 10 und 11 1928 S 524 530 599 608 650 657 ZDB ID 211624 8 Friedrich Bahker Die Linienzugbeeinflussung und ihre Aufgabe bei der automatischen Steuerung von Schnellstzugen In Elektrotechnische Zeitschrift Heft 11 1964 S 329 333 Birgit Milius 50 Jahre Linienzugbeeinflussung in Deutschland In Signal Draht Heft 9 2015 S 6 8 Heinz Rummert Leistungssteigerung von Verkehrswesen durch fernmeldetechnische Hilfsmittel Technische Hochschule Carolo Wilhelmina zu Braunschweig 1956 Peter Form Die Zug und Streckensicherung von Eisenbahnen durch impulsverarbeitende Systeme Technische Hochschule Carolo Wilhelmina zu Braunschweig 1964 Wilhelm Koth Die Linienzugbeeinflussung Teil II Praktische Anwendungen In Elsners Taschenbuch der Eisenbahntechnik 1975 ZDB ID 242938 X S 149 199 Die Linienzugbeeinflussung In Signal Draht Band 58 Nr 7 1966 S 119 Wilh Koth Einrichtungen der Linienzugbeeinflussung auf der Schnellfahrstrecke Munchen Augsburg In Signal Draht Band 57 Nr 11 1965 S 187 196 Ernst Kockelkorn Auswirkungen der neuen Eisenbahn Bau und Betriebsordnung EBO auf den Bahnbetrieb In Die Bundesbahn 13 14 1967 S 445 452 Carl Luddecke Die Linienzugbeeinflussung fur Schnellfahrten der Deutschen Bundesbahn In Signal Draht 57 Nr 2 1965 S 17 29 Ernst Kilb Grundsatzliches zur selbsttatigen Steuerung von Schnellstfahrzeugen In Die Bundesbahn 1963 S 59 68 Karl Heinz Suwe Fuhrerraumsignalisierung mit der LZB In Eisenbahntechnische Rundschau 38 Heft 7 8 1989 S 445 451 Walter Schmitz Linienzugbeeinflussung LZB In Signal Draht Band 61 Nr 2 Tetzlaff Verlag Frankfurt 1969 S 17 23 Ernst Kilb Versuche an Triebfahrzeugen mit Uberwachung und Regelung des Antriebs und der Bremse bei Zugbeeinflussung uber Linienleiter In Elektrische Bahnen Band 36 Nr 7 1965 S 164 171 Walter Schmitz Die Signaltechnik auf Schnellstfahrstrecken In Die Bundesbahn 1965 S 53 58 Bernd Kuhlmann Der Berliner Aussenring Kenning Nordhorn 1997 ISBN 3 927587 65 6 S 105 Eduard Murr Funktionale Weiterentwicklung der Linienzugbeeinflussung LZB In Die Deutsche Bahn Band 68 Nr 7 1992 S 743 746 Karl Endmann Signaltechnische Erganzung der Schrankenanlagen auf der Schnellfahrstrecke Munchen Augsburg In Signal Draht Band 57 Nr 11 1965 S 197 202 Neue LZB Technik fur Schnellfahrstrecken In DB Praxis ZDB ID 580765 7 November 1989 S 2 9 LZB Fahrzeuggerat 80 genehmigt In Signal Draht 74 Nr 9 S 190 H Sporleder Sicher fahren mit LZB Fahrzeuggeraten PDF 19 September 2015 archiviert vom Original nicht mehr online verfugbar am 22 November 2023 abgerufen am 20 August 2024 Gerd Renninger Franz Riedisser Eisenbahn Ingenieur Kalender Hrsg Verband Deutscher Eisenbahn Ingenieure 2009 ISBN 978 3 7771 0375 4 S 173 184 Forschungs und Versuchsamt des Internationalen Eisenbahnverbandes Hrsg Frage S 1005 Linienformige zugbeeinflussung Bericht Nr 2 Teil II Schlussbericht Betriebszuverlassigkeit des im ORE Bericht A 46 R 6 Anlage 6A beschriebenen linienformigen Zugbeeinflussungssystems Utrecht September 1980 Anhang 2 S 2 7 Hansjorg Appel Die rechnergesteuerte Linienzugbeeinflussung der Bauform Lorenz in der Erprobung der Strecke Bremen Hamburg In Signal Draht Band 66 Nr 11 1974 S 202 208 Ludwig Wehner Steuerung des Schienenschnellverkehrs In DB Report 79 Hestra Verlag Darmstadt 1979 S 87 92 ISSN 0072 1549 Ohne Autor Die weiteren Plane der Neuen Bahn In Bahn Special Die Neue Bahn Nr 1 1991 Gera Nova Verlag Munchen S 78 f Forschungs und Versuchsamt des Internationalen Eisenbahnverbandes Hrsg Frage S 1005 Linienformige zugbeeinflussung Bericht Nr 2 Teil I Schlussbericht Betriebszuverlassigkeit des im ORE Bericht A 46 R 6 Anlage 6A beschriebenen linienformigen Zugbeeinflussungssystems Utrecht September 1980 S 33ff Eduard Murr Linienzugbeeinflussung derzeitiger Stand der Entwicklung In Signal Draht Band 71 Nr 11 November 1979 S 225 232 Hartwig Schoing Gunter Geiss Die Instandhaltung der ortsfesten Anlagen der Linienzugbeeinflussung auf der Strecke Hamburg Bremen In Signal Draht Band 107 108 Nr 9 10 11 12 1 2 1978 S 212 215 240 242 267 269 288 291 31 33 58 60 Die Hefte 1 und 2 erschienen 1979 Siegfried Gersting 200 km h mit Linienzugbeeinflussung In Der Eisenbahningenieur Band 29 Nr 9 1978 S 435 f Werner Hain Linienzugbeeinflussung LZB kein Buch mit sieben Siegeln In Eisenbahn Unfallkasse Hrsg Bahnpraxis B 2007 S 4 ff PDF Datei Bernhard Buszinsky Steuerung des Zugverkehrs auf Schnellfahrstrecken In Die Bundesbahn Band 67 Nr 6 1991 S 689 694 Die neue Linienzugbeeinflussung In DB Praxis ZDB ID 580765 7 Juli 1989 S 1 8 Karl Heinz Suwe CIR ELKE ein Projekt der Deutschen Bahnen aus Sicht der Eisenbahnsignaltechnik In Schweizer Eisenbahn Revue Nr 1 2 1993 S 40 46 Geanderte EBO in Kraft gesetzt In Der Eisenbahningenieur Nr 7 Juli 1991 S 384 Thomas Anton Gerd Renninger Joachim Gunther Die neue LZB Fahrzeugeinrichtung LZB80E Feldtests Zulassung Erprobung In Signal Draht Band 99 Nr 6 2007 S 20 24 Jahresruckblick 1988 In Die Bundesbahn Jg 65 Nr 1 1989 S 44 Meldung Einfuhrung des neuen LZB Betriebsverfahrens nun bundesweit In Eisenbahn Kurier Nr 196 1 1989 S 10 Meldung Tunnelfunk bis 1991 In Die Bundesbahn Jg 65 Nr 4 1989 S 348 Horst Walther Karl Lennartz Einsatz von elektronischen Stellwerken auf Neubaustrecken In Eisenbahntechnische Rundschau 36 Nr 4 1987 S 219 222 Joachim Fiedler Bahnwesen Planung Bau und Betrieb von Eisenbahnen S U Stadt und Strassenbahnen Unterschleissheim Wolters Kluwer 5 Auflage 2005 S 275 Lothar Fendrich Albert Bidinger Die Komponenten des Fahrwegs fur das ICE System in der Bewahrung In Eisenbahntechnische Rundschau Band 41 Nr 6 Juni 1992 ISSN 0013 2845 S 391 396 Der ICE ein Produkt des Systemverbundes Bahn PDF In bahntech Nr 1 06 Deutsche Bahn S 24 f archiviert vom Original nicht mehr online verfugbar am 24 Oktober 2006 abgerufen am 24 Januar 2006 Florian Kollmannsberger Lennart Kilian Klaus Mindel Migration von LZB zu ETCS Streckenseitige Parallelausrustung LZB ETCS In Signal Draht Band 95 Nr 3 2003 S 6 11 Tatigkeitsbericht 2009 Eisenbahnen PDF In bundesnetzagentur de Bundesnetzagentur Juni 2010 S 50 abgerufen am 18 Februar 2022 Beschluss des 13 Senats vom 6 Juni 2012 Aktenzeichen 13 B 291 12 Oberverwaltungsgericht fur das Land Nordrhein Westfalen abgerufen am 11 August 2015 Plan zur Erhohung der Schienenwegkapazitat PEK fur den als uberlastet erklarten Schienenweg Wustermark Rathenow Strecke 6185 PDF In fahrweg dbnetze com DB Netz 16 Dezember 2021 S 23 f archiviert vom Original am 13 Januar 2022 abgerufen am 11 Januar 2022 Abgeschlossene Hochrustung aller LZB Strecken auf CE In DB InfraGO 10 Oktober 2024 abgerufen am 13 Oktober 2024 Meldung Tempo 200 bald auch in Osterreich In Eisenbahntechnische Rundschau 42 Nr 5 1993 S 276 BMVIT Hrsg National Implementation Plan for ERTMS in Austria Juli 2017 S 31 englisch europa eu PDF 659 kB Swen Lehr Thomas Naumann Otto Schittenhelm Parallele Ausrustung der Strecke Berlin Halle Leipzig mit ETCS und LZB In Signal Draht Band 98 Nr 4 2006 S 6 10 Ulrich Oser Betriebliche Gesamtkonzeption fur CIR ELKE In Die Deutsche Bahn Band 68 Nr 7 1992 S 723 729 Eric Preuss Eisenbahnunfalle bei der Deutschen Bahn transpress Verlag Stuttgart 2004 ISBN 3 613 71229 6 S 106 109 ICE mit 185 km h uber Weiche In Eisenbahn Revue International Heft 1 2002 S 3 Zugsgefahrdung in Fallersleben In Eisenbahn Revue International Ausgabe 6 2002 S 298 Hans Werner Renz Marcus Mutz Kopplung Stellwerk Zugsicherung mit neuer hochverfugbarer Schnittstelle In Signal Draht Band 97 Nr 12 2005 S 35 39 LZB Bereichskennzeichen und LZB Blockkennzeichen im Signalbuch der Deutschen Bahn PDF 1 7 MB DB Netze 26 Juli 2017 abgerufen am 3 Oktober 2021 Uwe Drager Martin Krieger Das modulare Fahrzeuggerat LZB 80E offen fur den Ubergang nach ETCS In Signal Draht Band 98 Nr 12 2006 S 26 30 Joachim Nordmann Auf einem ETCS Kern basierende LZB80 mit PZB90 Funktion In Signal Draht Band 96 September 2004 S 41 46 Fahrdienstvorschrift Richtlinien 408 21 27 PDF 2 5 MB DB Netz AG abgerufen am 22 November 2020 408 2456 Abschnitt 5 Burkhard Wachter Weiterentwickelte Linienzugbeeinflussung In Roland Heinisch Hrsg ICE Neubaustrecke Koln Rhein Main Planen Bauen Betreiben Hestra Verlag Darmstadt 2002 S 132 f ISBN 3 7771 0303 9 Ralf Klammert Oberleitung und Bahnstromversorgung In Roland Heinisch Armin Keppel Dieter Klumpp Jurgen Siegmann Hrsg Ausbaustrecke Hamburg Berlin fur 230 km h Eurailpress Hamburg 2005 ISBN 3 7771 0332 2 Ausschluss gleichzeitiger Nutzung von Tunneln durch Reise und Guterzuge In DB Systemtechnik Hrsg Tatigkeitsbericht 2007 S 21 Hans Peter Vetsch Andre Schweizer Adrian Egloff Markus Schindelholz Automatisierter Fahrbetrieb auf konventionellen Eisenbahnstrecken In Signal Draht Band 113 Nr 3 2021 ISSN 0037 4997 S 22 27 Hans Heinrich Grauf Das Notbremskonzept fur Neubaustrecken In Die Bundesbahn Band 64 Nr 8 August 1988 S 709 712 Wilhelm Koth Die Linienzugbeeinflussung Teil I Grundlagen In Elsners Taschenbuch der Eisenbahntechnik 1974 ZDB ID 242938 X S 171 215 Florian Rohr Digitale Sensoren zur ETCS Standorterkennung In Der Eisenbahningenieur Band 69 Nr 8 August 2019 S 42 f E Murr Der Ortungsrechner fur die LZB 80 Fahrgerate In Signal Draht Band 83 Nr 7 8 1991 ISSN 0037 4997 S 190 193 Gregor Theeg Sergej Vlasenko Hrsg Railway Signalling amp Interlocking International Compendium 1 Auflage Eurailpress Hamburg 2009 ISBN 978 3 7771 0394 5 S 240 Mathias Oestreich Loknummern Salat In Eisenbahn Kurier Nr 8 2021 ISSN 0170 5288 S 40 42 Office for Research and Experiments Hrsg Linienzugbeeinflussung Schnittstellenbedingungen des im ORE A46 RO 6 Anlage 6A beschriebenen Systems April 1981 LZB Sicherheit mittels Linienleiter In DB Praxis ZDB ID 580765 7 April 1988 S 2 8 Eckehard Schnieder Verkehrsleittechnik Automatisierung des Strassen und Schienenverkehrs Springer 2007 ISBN 978 3 540 48541 4 eingeschrankte Vorschau in der Google Buchsuche fahrweg dbnetze com Julian Fassing Marcel Helwig Peter Muller Toni Keil Martin Rosenbohm Fabian Walf Philip Welsch Generalsanierung der Riedbahn eine Zwischenbilanz In Der Eisenbahningenieur Band 75 Nr 7 Juli 2023 ISSN 0013 2810 S 46 51 online PDF Joachim Nied Wolfgang Lons Jorg Ritzert Ausbau der Strecke Ingolstadt Petershausen Projektziele und aktueller Sachstand In Eisenbahntechnische Rundschau Heft 11 Jahrgang 2009 S 556 560 LZB Erweiterung Petershausen Rohrbach Bauuberwachung LST 50Hz amp KTB In DB InfraGO AG 24 Januar 2025 abgerufen am 27 Januar 2025 LZB Erweiterung Petershausen Rohrbach Bauuberwachung PDF In bieterportal noncd db de Abgerufen am 27 Januar 2025 Datei Anlage 1 0 Projektbeschreibung u Vorbem BUW LB pdf in verschachteltem ZIP Archiv fahrweg dbnetze com Linienzugbeeinflussung LZB westlich Pasing NEM 18 In bahnausbau muenchen de DB Netz Januar 2018 abgerufen am 26 Januar 2018 Seite wurde Ende Januar 2018 veroffentlicht Ludwig Wehner Signalsystem der S Bahn Munchen In Signal Draht 62 Nr 11 S 200 204 1970 Heinz Delvendahl Gestaltung der Bahnanlagen und signaltechnische Ausstattung moderner S Bahnen In Die Bundesbahn 1969 S 993 1001 Willi Lettau Halbzeit fur den Bau der Munchener S Bahn In Die Bundesbahn Nr 21 22 1969 S 1073 1088 Otto Wolf Das Signalsystem fur die S Bahn Munchen In Signal Draht Band 60 Nr 9 1968 S 141 150 Klaus Hornemann Linienzugbeeinflussung bei der S Bahn Munchen In Eisenbahn Revue International Heft 6 2006 S 306 311 Bayerisches Staatsministerium fur Wirtschaft Infrastruktur Verkehr und Technologie Antwort vom 20 April 2010 auf eine Landtagsanfrage vom 1 Februar 2010 In Drucksache 16 4700 vom 8 Juni 2010 Bayerischer Landtag Munchen 2010 S 3 Schreck Meyer Strumpf S Bahnen in Deutschland Alba Buchverlag Dusseldorf 1979 2 Auflage S 72ff S Bahn Munchen 420 Comeback In Bahn Report Nr 3 2019 S 69 Erstmals LZB Einbau bei den OBB In Bahn Revue Jahrgang 1991 ZDB ID 1390658 6 S 43 f Nationaler Umsetzungsplan ERTMS Bundesministerium fur Klimaschutz Umwelt Energie Mobilitat Innovation und Technologie Juli 2017 abgerufen am 8 September 2022 Heinz Althaus Linienformiges Zugbeeinflussungssystem ZSL 90 In Signal Draht 86 Nr 5 S 162 1994 Neues in Kurze In SEAK Hrsg Eisenbahn Amateur 1981 SBB Anlagen S 768 Hugo Hayoz Das System der Linienzugbeeinflussung LZB L 72 bei den Schweizerischen Bundesbahnen SBB In Eisenbahntechnische Rundschau 27 Nr 10 1978 S 623 630 Titelblatt und Kommentar zum Inhaltsverzeichnis In Signal Draht Bd Jg Nr 73 1981 S 133 f Siemens AG Elektrischer Triebzug DESIRO ET fur den Express Rail Link Kuala Lumpur Malaysia PDF Ehemals im Original nicht mehr online verfugbar abgerufen am 14 Dezember 2011 1 2 Seite nicht mehr abrufbar Suche in Webarchiven ETCS fur Madrid Sevilla In Eisenbahn Revue International Nr 5 Mai 2020 ISSN 1421 2811 S 259 A Lau Verkehrsamateure proben die Zukunft In Hamburger Nahverkehrsnachrichten Nr 15 1 von Marz 1968 S 3 5 Hamburger Verkehrsamateure Markus Jurziczek Linienzugbeeinflussung LZB Berliner Verkehrsseiten 2010 Abgerufen am 11 August 2015 Alexander Seefeldt Berliner U Bahn Linien U9 Nord Sud durch die City West Robert Schwandl Verlag Berlin 2011 ISBN 978 3 936573 30 5 S 56 67 Markus Jurziczek Der SelTrac Versuchsbetrieb Berliner Verkehrsseiten 2010 Abgerufen am 11 August 2015 Markus Jurziczek Systemtechnik fur den automatischen Regelbetrieb STAR Berliner Verkehrsseiten 2010 Abgerufen am 11 August 2015 Dr Lichtenegger TU Graz Abstandsregelung Cornelie Heidecker Klaus Dorendorf Pierre Wossough Dieter Groner Neue Generation von LZB Fahrzeuggeraten fur die U Bahn Munchen In Signal Draht Band 97 Nr 12 2005 S 30 34 Knut Strubing Technische Losungen fur die Uberfuhrung des konventionellen in den automatischen Betrieb PDF 2 5 MB Abgerufen am 11 August 2015 Projektseite Fahrerlose U Bahn Nurnberg Archiviert vom Original nicht mehr online verfugbar am 9 Juli 2012 abgerufen am 10 Februar 2011 Info Der Archivlink wurde automatisch eingesetzt und noch nicht gepruft Bitte prufe Original und Archivlink gemass Anleitung und entferne dann diesen Hinweis 1 2 Reiner Behnsch ETCS Strategie der DB Netz AG Konzept zur wertschopfenden ETCS Strategie PDF 920 kB DB Netze 18 September 2013 archiviert vom Original nicht mehr online verfugbar am 23 Oktober 2015 abgerufen am 11 August 2015 Christian Beckmann Stefan Rover ETCS fur die Digitale Schiene Deutschland In DB Netz AG Hrsg Infrastrukturprojekte 2018 Bauen bei der Deutschen Bahn PMC Media House Hamburg 2018 ISBN 978 3 96245 163 9 S 114 119 Niels Hohn Aktueller Stand der Implementierung von ETCS signalgefuhrt ETCS Level 1 Limited Supervision In Signal Draht Band 113 Nr 9 September 2017 ISSN 0037 4997 S 45 48 Philipp Nagl ESTW Gelnhausen in Betrieb Letzte LZB L72 Zentrale ausser Betrieb Drehscheibe Online 21 November 2023 abgerufen am 22 November 2023 Josef Ramerth ETCS Migrationsplan und Inbetriebnahme weiterer Strecken PDF 2 3 MB DB Netze 13 Mai 2014 archiviert vom Original nicht mehr online verfugbar am 23 Oktober 2015 abgerufen am 11 August 2015 Uwe Wendland Ablosekonzept LZB ETCS PDF 1 6 MB ETCS Kundenveranstaltung am 13 Mai 2014 in Kassel DB Netze 13 Mai 2014 archiviert vom Original nicht mehr online verfugbar am 23 Oktober 2015 abgerufen am 11 August 2015 Uwe Drager ETCS und der Ubergang zu den nationalen Zugsicherungssystemen der DB AG In Signal Draht Band 96 Nr 11 2004 S 6 15 Zugbeeinflussungssysteme ASFA Spanien ALSN ehemalige UdSSR ATB Niederlande ATC Japan Schweden USA AWS Grossbritannien Crocodile RS DAAT Memor Memor II Frankreich Belgien Luxemburg CTCS China EBICAB Schweden Norwegen Portugal Bulgarien EVM Ungarn GW ATP Grossbritannien Indusi PZB Deutschland Osterreich Rumanien Nachfolgestaaten Jugoslawiens Israel Integra Signum Schweiz JKV Finnland KLUB U Russland KVB Frankreich Grossbritannien LS Tschechien LZB Deutschland Osterreich Spanien Schweiz Mirel Slowakei PTC USA Pulse Code Cab Signaling USA IIATS USA RS4 Codici RS9 Codici SCMT Italien SELCAB Spanien SHP Polen TBL Belgien TPWS Grossbritannien TVM Frankreich Grossbritannien Belgien Sudkorea ZBS S Bahn Berlin ZSI 90 ZSI 127 ZSL 90 ZST 90 Schmalspur Schweiz ZUB 121 Schweiz Spanien ZUB 122 ZUB 262 Deutschland fur Neigetechnik Zuge ZUB 123 Danemark ETCS europaisches Zugbeeinflussungssystem CBTC U Bahnen weltweit